Telecommande_2024/communication.c

108 lines
3.2 KiB
C
Raw Normal View History

2024-01-12 16:26:55 +00:00
/*****
*
* Le principe est que la télécommande soit l'esclave I2C
* Pour envoyer un message, on charge le message à l'adresse 0 de la "mémoire" pour l'i2c
*
* Pour lire le message, le robot interroge la télécommande, et demande le contenu à partir de l'adresse 0 de la mémoire.
* Ainsi, en cas d'échec de la communication, le robot détectera une manette débranchée.
* Par défaut, la fonction lit 255 caractères.
*
* Copyright (c) 2024 - Club robotique de Riom
*
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "i2c_fifo.h"
#include "i2c_slave.h"
#include "i2c_maitre.h"
#include "string.h"
/// DEBUT DE LA CONFIGURATION de L'I2C
#define I2C0_SDA_PIN 16
#define I2C0_SCL_PIN 17
#define I2C_SLAVE_ADDRESS 0x17
static const uint I2C_SLAVE_SDA_PIN = I2C0_SDA_PIN;
static const uint I2C_SLAVE_SCL_PIN = I2C0_SCL_PIN;
// The slave implements a 256 byte memory. To write a series of bytes, the master first
// writes the memory address, followed by the data. The address is automatically incremented
// for each byte transferred, looping back to 0 upon reaching the end. Reading is done
// sequentially from the current memory address.
static struct
{
uint8_t mem[256];
uint8_t mem_address;
bool mem_address_written;
} context;
// Our handler is called from the I2C ISR, so it must complete quickly. Blocking calls /
// printing to stdio may interfere with interrupt handling.
static void i2c_slave_handler(i2c_inst_t *i2c, i2c_slave_event_t event) {
switch (event) {
case I2C_SLAVE_RECEIVE: // master has written some data
if (!context.mem_address_written) {
// writes always start with the memory address
context.mem_address = i2c_read_byte(i2c);
context.mem_address_written = true;
} else {
// save into memory
context.mem[context.mem_address] = i2c_read_byte(i2c);
context.mem_address++;
}
break;
case I2C_SLAVE_REQUEST: // master is requesting data
// load from memory
i2c_write_byte(i2c, context.mem[context.mem_address]);
context.mem_address++;
break;
case I2C_SLAVE_FINISH: // master has signalled Stop / Restart
context.mem_address_written = false;
break;
default:
break;
}
}
void i2c_set_slave_mode_perso(i2c_inst_t *i2c, uint8_t addr) {
i2c->hw->enable = 0;
//while( !(i2c->hw->enable_status & 0x1) );
i2c->hw->sar = addr;
i2c->hw->con = 0;
i2c->hw->enable = 1;
}
static void setup_slave() {
gpio_init(I2C_SLAVE_SDA_PIN);
gpio_set_function(I2C_SLAVE_SDA_PIN, GPIO_FUNC_I2C);
gpio_pull_up(I2C_SLAVE_SDA_PIN);
gpio_init(I2C_SLAVE_SCL_PIN);
gpio_set_function(I2C_SLAVE_SCL_PIN, GPIO_FUNC_I2C);
gpio_pull_up(I2C_SLAVE_SCL_PIN);
i2c_slave_init(i2c0, I2C_SLAVE_ADDRESS, &i2c_slave_handler);
}
/// FIN DE LA CONFIGURATION de L'I2C
void communication_init(void){
setup_slave();
i2c_maitre_init();
}
void communication_envoyer_message(unsigned char * message, unsigned int message_length){
memcpy(context.mem, message, message_length);
}
int communication_lire_message(unsigned char * message){
i2c_lire_registre(I2C_SLAVE_ADDRESS, 0, message, 255);
}