Compare commits

...

6 Commits

9 changed files with 779 additions and 98 deletions

View File

@ -12,6 +12,8 @@
#define Rad_Deg 57.2957795130823
#define MOUVEMEMENT_ROTATION 0x10
#define MOUVEMEMENT_TRANSLATION 0x8
#define MOUVEMENT_FINI 0x4
#define MOUVEMENT_EN_COURS 0x2
#define MOUVEMENT_INTERRUPTION 0x1
@ -90,9 +92,10 @@ int index_Maitre = 0;
bool Mvt_tolerance_OK =false;
bool Balises_OK = 0;
int tolerance_position =100;
float tolerance_orientation =0.05; // 3°
char* tableau[] = {"Lecture serveur", "Prise position", "Verif mvmt end ou cmd", "Compar position"};
char* tableau[] = {"Lecture serveur", "Prise position", "Verif mvmt end ou cmd", "Compar position", "Deplacement absolu"};
char* statu[] = {"/..","./.","../"};
int index_statu=0;
@ -152,7 +155,7 @@ void loop() {
static int64_t time;
struct chassis_reception_t chassis_reception;
strategie();
gestion_match();
affichage_resultats();
delay(10);
}
@ -256,7 +259,7 @@ void affiche_msg(char * chaine1, char * chaine2){
M5.Lcd.print(chaine2);
}
void strategie(){
void gestion_match(){
struct chassis_reception_t chassis_reception;
struct chassis_emission_t chassis_emission;
struct triangulation_reception_t triangulation_reception;
@ -267,6 +270,8 @@ void strategie(){
ATTENTE_ORDRE=0,
LECTURE_TRIANGULATION=1,
DEPLACEMENT_RELATIF=2,
MATCH_EN_COURS=3,
TEST_DEPLACEMENT_ABSOLU=4,
};
switch(index_Maitre){
@ -291,29 +296,31 @@ void strategie(){
index_Maitre = DEPLACEMENT_RELATIF;
}
if(M5.BtnA.read() == 1){
Serial.println("BtnA");
// Déplacement en X
translation_x_mm = 10000;
translation_x_mm = 500;
translation_y_mm = 0;
rotation_rad = 0;
index_Maitre = DEPLACEMENT_RELATIF;
//index_Maitre = DEPLACEMENT_RELATIF;
Scan_Triangulation(&triangulation_reception);
}
if(M5.BtnB.read() == 1){
// Déplacement en Y
translation_x_mm = 0;
translation_y_mm = 2000;
rotation_rad = 0;
index_Maitre = DEPLACEMENT_RELATIF;
Serial.println("BtnB");
// Déplacement en Y
//Triangulation_send_immobile(0);
index_Maitre = TEST_DEPLACEMENT_ABSOLU;
}
if(M5.BtnC.read() == 1){
// Rotation
Serial.println("BtnC");
translation_x_mm = 0;
translation_y_mm = 0;
rotation_rad = 100;
Triangulation_send_immobile(1);
index_Maitre = DEPLACEMENT_RELATIF;
index_Maitre = MATCH_EN_COURS;
}
break;
@ -336,54 +343,168 @@ void strategie(){
index_Maitre = ATTENTE_ORDRE;
}
break;
case MATCH_EN_COURS:
if(Strategie() == ACTION_TERMINEE){
index_Maitre = ATTENTE_ORDRE;
}
break;
case TEST_DEPLACEMENT_ABSOLU:
if(deplacement_absolu(800, 800, 0, 0) == ACTION_TERMINEE){
index_Maitre = ATTENTE_ORDRE;
}
break;
}
}
void compar_cinematique(){
// Consigne de position à atteindre en X, Y et angle par rapport à la position actuel
// dans le repère du terrain
//Position à atteindre théorique
struct triangulation_reception_t triangulation_reception;
enum etat_action_t Strategie(void){
static enum {
STRAT_RECULE_BANDEROLE, // Deplacement relatif
STRAT_ALLER_GRADINS_1, // Déplacement absolu
STRAT_ALLER_PREPA_BACKSTAGE, // Déplacement absolu
STRAT_ALLER_BACKSTAGE // Déplacement relatif
X_futur = MemCmd_X;
Y_futur = MemCmd_Y;
}etat_strategie = STRAT_RECULE_BANDEROLE;
enum etat_action_t etat_action;
int translation_x_mm, translation_y_mm;
float rotation_rad;
Scan_Triangulation(&triangulation_reception); //Prise de la position actuel
if(Balises_OK == true && error == 0){ //triangulation calcul valide ************** a prendre sur I2c
compar_X = X_futur - Position_actuelle_X; //compar de la position théoriquement atteinte avec la position actuel
compar_Y = Y_futur - Position_actuelle_Y; //YR : position actuel Y_futur : Position de départ + mouvement demander (donc point d'arrivé théorique)
if(abs(compar_X) < tolerance_position && abs(compar_Y) < tolerance_position){
Mvt_tolerance_OK = true;
}else{
// print de la difference ; determiné cmd il nous faudrait faire à nouveau pour atteindre la position voulue
// Distance à parcourir
float distance_calculee = sqrt(sq(compar_X) + sq(compar_Y));
float angle_robot_vers_destination = M_PI_2 - atan2(compar_Y, compar_X);
float distance_Y_ref_robot = cos(angle_robot_vers_destination - Angle_Robot_RAD) * distance_calculee;
float distance_X_ref_robot = sin(angle_robot_vers_destination - Angle_Robot_RAD) * distance_calculee;
if(corrige == false){
mem_x = distance_X_ref_robot; // faire une memoire et travailler avec
mem_y = distance_Y_ref_robot;
corrige = true;
switch(etat_strategie){
case STRAT_RECULE_BANDEROLE:
// Déplacement en X
translation_x_mm = -450;
translation_y_mm = 0;
rotation_rad = 0;
etat_action = deplacement_relatif(translation_x_mm, translation_y_mm, rotation_rad, 0);
if(etat_action == ACTION_TERMINEE){
etat_strategie = STRAT_ALLER_GRADINS_1;
}
Mvt_tolerance_OK = false;
}
}else{
compar_X =0 ; //compar de la position théoriquement atteinte avec la position actuel
compar_Y =0 ;
mem_x =0 ; //compar de la position théoriquement atteinte avec la position actuel
mem_y =0 ;
break;
case STRAT_ALLER_GRADINS_1:
etat_action = deplacement_absolu(730, 550, M_PI/2., 0);
if(etat_action == ACTION_TERMINEE){
etat_strategie = STRAT_RECULE_BANDEROLE;
return ACTION_TERMINEE;
}
}
return ACTION_EN_COURS;
}
/// @brief : compare la position actuelle et la position lue par la balise
/// Note : Pour l'instant, on ne déclenche un mouvment qu'en cas d'ecart sur la distance, pas sur l'orientation.
void compar_cinematique(int consigne_x_mm, int consigne_y_mm, float consigne_orientation_rad,
struct triangulation_reception_t triangulation_reception, struct chassis_emission_t * chassis_emission){
float compar_rotation;
compar_X = consigne_x_mm - triangulation_reception.pos_x_mm; //compar de la position théoriquement atteinte avec la position actuel
compar_Y = consigne_y_mm - triangulation_reception.pos_y_mm; //YR : position actuel Y_futur : Position de départ + mouvement demander (donc point d'arrivé théorique)
compar_rotation = consigne_orientation_rad - triangulation_reception.angle_rad;
while(compar_rotation < -M_PI){
compar_rotation += 2* M_PI;
}
while(compar_rotation > M_PI){
compar_rotation -= 2* M_PI;
}
printf("compar_X:%d\tcompar_y:%d\tcompar_rot:%f\n", compar_X, compar_Y, compar_rotation);
if(abs(compar_X) < tolerance_position && abs(compar_Y) < tolerance_position){
if(abs(compar_rotation) > tolerance_orientation) {
chassis_emission->translation_x_mm = 0;
chassis_emission->translation_y_mm = 0;
chassis_emission->rotation_z_rad = compar_rotation;
chassis_emission->status = MOUVEMENT_EN_COURS;
}else{
chassis_emission->status = MOUVEMENT_FINI;
}
}else{
// print de la difference ; determiné cmd il nous faudrait faire à nouveau pour atteindre la position voulue
// Distance à parcourir
float distance_calculee = sqrt(sq(compar_X) + sq(compar_Y));
float angle_robot_vers_destination = M_PI_2 - atan2(compar_Y, compar_X);
chassis_emission->translation_x_mm = sin(angle_robot_vers_destination - Angle_Robot_RAD) * distance_calculee;
chassis_emission->translation_y_mm = cos(angle_robot_vers_destination - Angle_Robot_RAD) * distance_calculee;
chassis_emission->rotation_z_rad = 0;
chassis_emission->status = MOUVEMENT_EN_COURS;
}
}
enum etat_action_t deplacement_absolu(int consigne_x_mm, int consigne_y_mm, int consigne_orientation_rad, int evitement){
static enum{
DA_INIT,
DA_COMPARE_POSITIONS,
DA_MVT_EN_COURS,
DA_ATTENTE,
} etat_deplacement = DA_INIT;
static int mem_consigne_x_mm, mem_consigne_y_mm, mem_consigne_orientation_rad;
static struct chassis_emission_t chassis_emission;
struct triangulation_reception_t triangulation_reception;
enum etat_action_t etat_deplacement_relatif;
switch(etat_deplacement){
case DA_INIT:
mem_consigne_x_mm = consigne_x_mm;
mem_consigne_y_mm = consigne_y_mm;
mem_consigne_orientation_rad = consigne_orientation_rad;
etat_deplacement = DA_COMPARE_POSITIONS;
Serial.printf("DA_INIT\n");
break;
case DA_COMPARE_POSITIONS:
Scan_Triangulation(&triangulation_reception); //Prise de la position actuel
if(triangulation_reception.validite == true){
Serial.printf("Compare cinematique\n");
compar_cinematique(mem_consigne_x_mm, mem_consigne_y_mm, mem_consigne_orientation_rad,
triangulation_reception, &chassis_emission);
if(chassis_emission.status == MOUVEMENT_EN_COURS){
// C'est que la fonction compar_cinematique indique qu'on doit se déplacer
// Les valeurs du déplacement sont renseignées dans "chassis_emission".
Serial.printf("DA_MVT_EN_COUR\n");
Serial.printf("pos_x:%d\tpos_y:%d\tOrientation:%f\n",triangulation_reception.pos_x_mm, triangulation_reception.pos_y_mm,
triangulation_reception.angle_rad);
Serial.printf("trans_x:%d\ttrans_y:%d\trot:%f\n",chassis_emission.translation_x_mm,
chassis_emission.translation_y_mm, chassis_emission.rotation_z_rad);
etat_deplacement = DA_MVT_EN_COURS;
}else{
// Alors nous sommes arrivés
// On réinitialise la mahcine à état
etat_deplacement = DA_INIT;
return ACTION_TERMINEE;
}
}
break;
case DA_MVT_EN_COURS:
Scan_Triangulation(&triangulation_reception); //Prise de la position actuel
etat_deplacement_relatif = deplacement_relatif(- chassis_emission.translation_x_mm,
-chassis_emission.translation_y_mm, chassis_emission.rotation_z_rad, evitement);
if(etat_deplacement_relatif == ACTION_TERMINEE){
Serial.printf("DA_COMPARE_POSITIONS\n");
etat_deplacement = DA_ATTENTE;
}
break;
case DA_ATTENTE:
delay(3000);
etat_deplacement = DA_COMPARE_POSITIONS;
break;
}
return ACTION_EN_COURS;
}
/// @brief Deplacement dans le repère du robot, pouvant prendre en compte la detection de l'adversaire
/// evitement : 1 pour s'arreter si adversaire detecté, 0 pour ignorer l'adversaire
enum etat_action_t deplacement_relatif(int distance_x_mm, int distance_y_mm, int rotation_rad, int evitement){
enum etat_action_t deplacement_relatif(int distance_x_mm, int distance_y_mm, float rotation_rad, int evitement){
static enum{
DR_INIT,
DR_MVT_EN_COUR,
@ -403,6 +524,7 @@ enum etat_action_t deplacement_relatif(int distance_x_mm, int distance_y_mm, int
chassis_emission.acceleration = ACCELERATION_STANDARD;
send_Chassis(&chassis_emission);
Triangulation_send_immobile(0);
etat_deplacement = DR_MVT_EN_COUR;
break;
@ -421,6 +543,7 @@ enum etat_action_t deplacement_relatif(int distance_x_mm, int distance_y_mm, int
Scan_chassis(&chassis_reception);
if(chassis_reception.status == MOUVEMENT_FINI){
Triangulation_send_immobile(1);
etat_deplacement = DR_INIT;
return ACTION_TERMINEE;
}
@ -430,46 +553,6 @@ enum etat_action_t deplacement_relatif(int distance_x_mm, int distance_y_mm, int
return ACTION_EN_COURS;
}
/// @brief
/// @brief Récupère position (X, Y) et l'orientation du robot
void Scan_Triangulation(struct triangulation_reception_t * triangulation_reception){
unsigned char tampon2[14];
lec_Balise_1, lec_Balise_2, lec_Balise_3 = 0, 0, 0;
//(Adresse I2c, Adresse dans le registre, tampon, longueur de donnée)
error = I2C_lire_registre(I2C_SLAVE_trian, 0, tampon2, 13); // si errror != de 0 alors erreur de communication
if (error !=0){
Err_Tri_com =1;IndexErr = 1;lec_Balise_1=0;lec_Balise_2=0;lec_Balise_3=0;
affiche_erreur("Scan_Triangulation", "Erreur I2C");
while(1);
}
else{Err_Tri_com =0;IndexErr = 0;}
if (error ==0){
triangulation_reception->pos_x_mm = tampon2[1]<< 24 | tampon2[2]<< 16 | tampon2[3]<< 8 | tampon2[4] ;
triangulation_reception->pos_y_mm = tampon2[5]<< 24 | tampon2[6]<< 16 | tampon2[7]<< 8 | tampon2[8] ;
Angle_Robot_DEG_int = tampon2[9]<< 24 | tampon2[10]<< 16 | tampon2[11]<< 8 | tampon2[12] ;
// Serial.print(tampon2[9], BIN);Serial.print(" ");Serial.print(tampon2[10], BIN);Serial.print(" ");Serial.print(tampon2[11], BIN);Serial.print(" ");Serial.println(tampon2[12], BIN);
Angle_Robot_RAD = Angle_Robot_DEG_int * M_PI / 180.;
lec_Balise_1 = tampon2[0] & 0x01;
lec_Balise_2 = (tampon2[0] >>1) & 0x01;
lec_Balise_3 = (tampon2[0] >>2 )& 0x01;
lec_Calcul_ok = (tampon2[0] >>3 )& 0x01;
if(Position_actuelle_X < PosLimNeg | Position_actuelle_X > PosLimPos){
triangulation_reception->pos_x_mm = 9999;
}
if(Position_actuelle_Y < PosLimNeg | Position_actuelle_Y > PosLimPos){
triangulation_reception->pos_y_mm = 9999;
}
}
if(lec_Balise_1 == 1 && lec_Balise_2 == 1 && lec_Balise_3 == 1 && lec_Calcul_ok == 1 && error ==0){
triangulation_reception->validite = true;
}else{
triangulation_reception->validite = false;
}
}
void scan_I2C_bus(){
char error, address;

View File

@ -0,0 +1,50 @@
/// @brief Récupère position (X, Y) et l'orientation du robot
void Scan_Triangulation(struct triangulation_reception_t * triangulation_reception){
unsigned char tampon2[14];
lec_Balise_1, lec_Balise_2, lec_Balise_3 = 0, 0, 0;
//(Adresse I2c, Adresse dans le registre, tampon, longueur de donnée)
triangulation_reception->validite = false;
error = I2C_lire_registre(I2C_SLAVE_trian, 0, tampon2, 13); // si errror != de 0 alors erreur de communication
if (error !=0){
Err_Tri_com =1;IndexErr = 1;lec_Balise_1=0;lec_Balise_2=0;lec_Balise_3=0;
affiche_erreur("Scan_Triangulation", "Erreur I2C");
while(1);
}
else{Err_Tri_com =0;IndexErr = 0;}
if (error ==0){
triangulation_reception->pos_x_mm = tampon2[1]<< 24 | tampon2[2]<< 16 | tampon2[3]<< 8 | tampon2[4] ;
triangulation_reception->pos_y_mm = tampon2[5]<< 24 | tampon2[6]<< 16 | tampon2[7]<< 8 | tampon2[8] ;
Angle_Robot_DEG_int = tampon2[9]<< 24 | tampon2[10]<< 16 | tampon2[11]<< 8 | tampon2[12] ;
// Serial.print(tampon2[9], BIN);Serial.print(" ");Serial.print(tampon2[10], BIN);Serial.print(" ");Serial.print(tampon2[11], BIN);Serial.print(" ");Serial.println(tampon2[12], BIN);
Angle_Robot_RAD = Angle_Robot_DEG_int * M_PI / 180.;
triangulation_reception->angle_rad = Angle_Robot_RAD;
lec_Balise_1 = tampon2[0] & 0x01;
lec_Balise_2 = (tampon2[0] >>1) & 0x01;
lec_Balise_3 = (tampon2[0] >>2 )& 0x01;
lec_Calcul_ok = (tampon2[0] >>3 )& 0x01;
if(Position_actuelle_X < PosLimNeg | Position_actuelle_X > PosLimPos){
triangulation_reception->pos_x_mm = 9999;
}
if(Position_actuelle_Y < PosLimNeg | Position_actuelle_Y > PosLimPos){
triangulation_reception->pos_y_mm = 9999;
}
}
if(lec_Balise_1 == 1 && lec_Balise_2 == 1 && lec_Balise_3 == 1 && lec_Calcul_ok == 1 && error ==0){
triangulation_reception->validite = true;
}
}
void Triangulation_send_immobile(int immobile){
unsigned char donnee=0;
if(immobile){
donnee = 1;
}
error = I2C_ecrire_registre(I2C_SLAVE_trian, 13, &donnee, 1); // si errror != de 0 alors erreur de communication
if (error !=0){
affiche_erreur("Send_Triangulation", "Erreur I2C");
while(1);
}
}

View File

@ -9,7 +9,8 @@ struct chassis_reception_t {
struct chassis_emission_t {
unsigned char status;
int translation_x_mm, translation_y_mm, rotation_z_rad;
int translation_x_mm, translation_y_mm;
float rotation_z_rad;
int vitesse, acceleration;
};

View File

@ -13,7 +13,6 @@ void Scan_chassis(struct chassis_reception_t * chassis_reception){
affiche_erreur("Scan_Chassi", "Erreur I2C");
while(1);
}else{
Serial.println("I2C OK");
Err_Chassi_com =0;
IndexErr = 0;
@ -25,16 +24,24 @@ void Scan_chassis(struct chassis_reception_t * chassis_reception){
void send_Chassis(struct chassis_emission_t * chassis_emission){
//if(nbr_essai<=10){
// Prévient le chassis d'un nouveau mouvement avec le 2eme bit du premier Octet
int nb_pas_x, nb_pas_y, nb_pas_rot;
// Conversion des mm ou radian en pas
nb_pas_x = chassis_emission->translation_x_mm * 4.049;
nb_pas_y = chassis_emission->translation_y_mm * 4.953;
nb_pas_rot = chassis_emission->rotation_z_rad * 791.;
Mot[0] = chassis_emission->status;
//y*=-1;
//y = y*direction;
Mot[1] = chassis_emission->translation_x_mm >>8;
Mot[2] = chassis_emission->translation_x_mm;
Mot[3] = chassis_emission->translation_y_mm >>8;
Mot[4] = chassis_emission->translation_y_mm;
Mot[1] = nb_pas_x >>8;
Mot[2] = nb_pas_x;
Mot[3] = nb_pas_y >>8;
Mot[4] = nb_pas_y;
//Serial.println(y);
Mot[5] = chassis_emission->rotation_z_rad >>8;
Mot[6] = chassis_emission->rotation_z_rad;
Mot[5] = nb_pas_rot >>8;
Mot[6] = nb_pas_rot;
Mot[7] = chassis_emission->vitesse >>8;
Mot[8] = chassis_emission->vitesse;
Mot[9] = chassis_emission->acceleration >>8;

View File

@ -91,7 +91,7 @@ void handleForm() {
// y= myString1.toInt() * coef_mvt/10;
chassis_emission_web.translation_y_mm = myString1.toInt();
String myString2 = server.arg("R"); //positon de cmd en Rotation Deg °
chassis_emission_web.rotation_z_rad = myString2.toInt() * 13.88888;
chassis_emission_web.rotation_z_rad = myString2.toInt() / 180 * M_PI;
String myString3 = server.arg("V"); // Vitesse de cmd en
chassis_emission_web.vitesse = myString3.toInt();
String myString4 = server.arg("A"); // Acceleration de cmd

Binary file not shown.

View File

@ -0,0 +1,60 @@
#define TAILLE_MEMOIRE_I2C 256
#define TAILLE_MESSAGE_ENVOI_MAX 32
byte memoire_I2C[TAILLE_MEMOIRE_I2C];
byte memoire_I2C_index=0;
bool nouveau_message=false;
uint8_t * get_i2c_data(){
return memoire_I2C;
}
void onRequest(){
uint32_t taille_envoi;
taille_envoi = min (TAILLE_MEMOIRE_I2C-memoire_I2C_index, TAILLE_MESSAGE_ENVOI_MAX);
Wire.write(&memoire_I2C[memoire_I2C_index], taille_envoi);
memoire_I2C_index++;
if(memoire_I2C_index>=TAILLE_MEMOIRE_I2C){
Serial.printf("memoire_I2C_index>=TAILLE_MEMOIRE_I2C\n");
}
}
void onReceive(int len){
memoire_I2C_index = Wire.read();
while(Wire.available()){
nouveau_message=true;
memoire_I2C[memoire_I2C_index] = Wire.read();
memoire_I2C_index++;
}
}
void I2C_Slave_init(int addr){
Wire.onReceive(onReceive);
Wire.onRequest(onRequest);
Wire.begin(addr);
}
bool I2C_Slave_nouveau_message(){
if(nouveau_message){
nouveau_message=false;
return true;
}
return false;
}
void I2C_envoi_8bits(byte value, char adresse){
memoire_I2C[adresse] = value;
}
void I2C_envoi_16bits(int16_t value, char adresse){
memoire_I2C[adresse] = value;
}
void I2C_envoi_32bits(int32_t value, char adresse){
memoire_I2C[adresse] = value >> 24;
memoire_I2C[adresse+1] = (value >> 16) & 0xFF;
memoire_I2C[adresse+2] = (value >> 8) & 0xFF;
memoire_I2C[adresse+3] = value & 0xFF;
}

View File

@ -0,0 +1,480 @@
/*
Test de triangulation
*/
#include <M5Core2.h>
#include <math.h>
#include <WiFi.h>
const char* ssid = "riombotique";
const char* password = "password";
IPAddress local_IP(192, 168, 99, 102);
IPAddress gateway(192, 168, 99, 1);
IPAddress subnet(255, 255, 255, 0);
WiFiServer server(80);
boolean reading = false;
String Lecture;
#define CONV 0.000628318530717959
#define CONV2 1.570796326794896619
#define pi 3.141592653589793
#define pi2 6.283185307179586
uint8_t * data_i2C;
int Balise[4][2]; // 4 balises potentielles i de 0 a 3
// Frequence modulation individuelle balises
// Balise[i][0] est la frequence de la balise
// Balise[i][1] est l'angle de la balise
bool Balise_Valide;
int A_Depart_Balise;
int A_Fin_Balise;
long Temps_Tour = millis();
long T_Depart_Balise = 0;
long T_Fin_Balise = 0;
long Frequence_Balise = 0;
long Nb_Pulses = 0;
long Chrono = 0;
int Angle = 0;
int Angle_Balise = 0;
int Nb_Balises = 0;
int Capteur = 2;
bool Trigger_Balises = true;
bool Calcul_Valide = false;
bool Balise_0 = false;
bool Balise_1 = false;
bool Balise_2 = false;
int Nb_tours = 0;
int Old_Nb_tours = 0;
int Pulse_Moteur = 190;
int Frequence_0 = 5000; // frequence balise 0
int Frequence_1 = 6000; // frequence balise 1
int Frequence_2 = 4000; // frequence balise 2
int Bande_P = 200; // bande passante balises
int X1 = -90; // abcisse balise 0
int X2 = -90; // abcisse balise 1
int X3 = 3090; // abcisse balise 2
int Y1 = 1950; // ordonnee balise 0
int Y2 = 50; // ordonnee balise 1
int Y3 = 1000; // ordonnee balise 2
int Xp1 = X1 - X2;
int Yp1 = Y1 - Y2;
int Xp3 = X3 - X2;
int Yp3 = Y3 - Y2;
int Xr, Yr, Angle_Robot_Deg_int;
int alignement = 2200;
float Angle_Robot_RAD, Angle_Robot_Deg, Angle_B1, angle_B1_calc, Angle_Ref_Theorique, calc1, calc2, offset;
void IRAM_ATTR fonction_AB(){ // fonction de comptage des pas du codeur angulaire
Angle ++;
if (Trigger_Balises){
Capteur = 2;
if (Angle > 1316) Capteur = 1;
if (Angle > 2633) Capteur = 2;
if (Angle > 4300) Capteur = 1;
if (Angle > 5966) Capteur = 2;
if (Angle > 7933) Capteur = 1;
if (Angle > 9299) Capteur = 2;
}
if (((Angle - A_Fin_Balise) > 100) && (!Trigger_Balises)){
if (Nb_Pulses > 20){ // analyse de la balise si plus de 10 pulses uniquement
// calcul de la frequence moyenne et validation de la balise
int Delta_T = (T_Fin_Balise - T_Depart_Balise) / 10;
Frequence_Balise = 100000 * (Nb_Pulses);
if (Delta_T > 0) Frequence_Balise = Frequence_Balise / Delta_T;
if (A_Fin_Balise < A_Depart_Balise) A_Fin_Balise = A_Fin_Balise + 10000;
Angle_Balise = (A_Fin_Balise + A_Depart_Balise) / 2;
if (Angle_Balise > 10000) Angle_Balise = Angle_Balise - 10000;
if ((Frequence_Balise > (Frequence_0 - Bande_P)) && (Frequence_Balise < (Frequence_0 + Bande_P)) && !Balise_0) {
Balise[0][0] = Frequence_Balise;
Balise[0][1] = Angle_Balise;
Nb_Balises ++;
Balise_0 = true; // la balise a ete vue, plus possible de la voir a nouveau
}
if ((Frequence_Balise > (Frequence_1 - Bande_P)) && (Frequence_Balise < (Frequence_1 + Bande_P)) && !Balise_1) {
Balise[1][0] = Frequence_Balise;
Balise[1][1] = Angle_Balise;
Nb_Balises ++;
Balise_1 = true; // la balise a ete vue, plus possible de la voir a nouveau
}
if ((Frequence_Balise > (Frequence_2 - Bande_P)) && (Frequence_Balise < (Frequence_2 + Bande_P)) && !Balise_2) {
Balise[2][0] = Frequence_Balise;
Balise[2][1] = Angle_Balise;
Nb_Balises ++;
Balise_2 = true; // la balise a ete vue, plus possible de la voir a nouveau
}
}
Trigger_Balises = true;
}
}
void IRAM_ATTR fonction_Z(){ // appelée à chaque tour
Nb_tours ++;
Angle = 0;
}
void IRAM_ATTR fonction_Balise_capteur_1(){ // appelée à chaque detection de baslise capteur 1
if (Capteur == 1) {
A_Fin_Balise = Angle;
// effectue a partir du 2eme pulse
Chrono = micros();
Nb_Pulses++;
T_Fin_Balise = Chrono;
// effectue au 1er pulse
if (Trigger_Balises){
A_Depart_Balise = Angle;
T_Depart_Balise = Chrono;
Nb_Pulses = 0;
Trigger_Balises = false;
//est-ce bien une balise modulee ? -> mesure du temps avant apparition de la prochaine impulsion impusion
}
}
}
void IRAM_ATTR fonction_Balise_capteur_2(){ // appelée à chaque detection de baslise capteur 2
if (Capteur == 2) {
A_Fin_Balise = Angle;
// effectue a partir du 2eme pulse
Chrono = micros();
Nb_Pulses++;
T_Fin_Balise = Chrono;
// effectue au 1er pulse
if (Trigger_Balises){
A_Depart_Balise = Angle;
T_Depart_Balise = Chrono;
Nb_Pulses = 0;
Trigger_Balises = false;
//est-ce bien une balise modulee ? -> mesure du temps avant apparition de la prochaine impulsion impusion
}
}
}
void IRAM_ATTR traitement_donnees() {
// calcul des coordonnees .........................
Calcul_Valide = false;
double A1 = (Balise[1][1] - Balise[0][1]) * CONV;
double A2 = (Balise[2][1] - Balise[1][1]) * CONV;
if(sin(A1)==0 || sin(A2)==0) return;
double T12 = cos(A1) / sin(A1);
double T23 = cos(A2) / sin(A2);
if ((T12 + T23)==0) return;
double T31 = (1 - (T12 * T23)) / (T12 + T23);
double Xp12 = Xp1 + (T12 * Yp1);
double Yp12 = Yp1 - (T12 * Xp1);
double Xp23 = Xp3 - (T23 * Yp3);
double Yp23 = Yp3 + (T23 * Xp3);
double Xp31 = (Xp3 + Xp1) + (T31 * (Yp3 - Yp1));
double Yp31 = (Yp3 + Yp1) - (T31 * (Xp3 - Xp1));
double Kp31 = (Xp1 * Xp3) + (Yp1 * Yp3) + (T31 * ((Xp1 * Yp3) - (Xp3 * Yp1)));
double D = ((Xp12 - Xp23) * (Yp23 - Yp31)) - ((Yp12 - Yp23) * (Xp23 - Xp31));
if (D==0) return;
Xr = X2 + ((Kp31 * (Yp12 - Yp23)) / D);
Yr = Y2 + ((Kp31 * (Xp23 - Xp12)) / D);
Calcul_Valide = true;
}
void setup() {
Serial.begin(115200);
M5.begin();
M5.Axp.SetSpkEnable(0);
// moteur
ledcSetup(0, 1000, 8);
ledcAttachPin(2, 0);
ledcWrite(0, Pulse_Moteur);
// I2C
Wire.setPins(32, 33);
I2C_Slave_init(0x30);
M5.lcd.setTextSize(2);
//Initialisation wifi
//------------WIFI------------
//Initialisation wifi
WiFi.config(local_IP, gateway, subnet);
WiFi.begin(ssid, password);
// Pour accéder aux données de l'I2C
data_i2C = get_i2c_data();
data_i2C[13] = 1; // On dit que le robot est immobile.
int test_wifi = 0;
while (WiFi.status() != WL_CONNECTED){
delay(300);
M5.Lcd.print(".");
test_wifi ++;
if (test_wifi > 10) break;
}
if (WiFi.status() == WL_CONNECTED) {
server.begin();
delay(500);
M5.Lcd.clear();
M5.Lcd.setCursor(10,10);
M5.Lcd.print("Connecte au reseau ;-)");
M5.Lcd.setCursor(10,30);
M5.Lcd.print(ssid);
}
else {
// le routeur riombotique n'a pas été trouvé - création d'un point d'accès
WiFi.mode(WIFI_OFF);
if (!WiFi.softAP("triangulation", "ilestsecret")) {
log_e("Soft AP creation failed.");
while(1);
}
IPAddress myIP = WiFi.softAPIP();
server.begin();
M5.Lcd.clear();
M5.Lcd.setCursor(10,10);
M5.Lcd.print("Creation Hotspot ;-)");
M5.Lcd.setCursor(10,30);
M5.Lcd.print("triangulation 192.168.4.1");
M5.Lcd.setCursor(10,50);
M5.Lcd.print("mdp : ilestsecret");
}
delay(1000);
M5.Lcd.clear();
// --------------------
pinMode(19, INPUT_PULLDOWN); // entree pulse tour codeur
pinMode(27, INPUT_PULLDOWN); // entree pulse angle codeur
pinMode(25, INPUT_PULLDOWN); // entree phototransistor capteur 1
pinMode(26, INPUT_PULLDOWN); // entree phototransistor capteur 2
attachInterrupt(27, fonction_AB, RISING); // appel fonction AB a chaque pulse codeur
attachInterrupt(19, fonction_Z, RISING); // appel fonction Z a chaque tour codeur
attachInterrupt(25, fonction_Balise_capteur_1, FALLING); // appel fonction Balise capteur 1 a chaque detection phototransistor
attachInterrupt(26, fonction_Balise_capteur_2, FALLING); // appel fonction Balise capteur 2 a chaque detection phototransistor
M5.Lcd.setCursor(10,10);
M5.lcd.print(" Salut Riombotique");
delay(500);
M5.Lcd.clear();
//M5.Lcd.setCursor(10,10);
//M5.Lcd.print("Nb tours : ");
//M5.Lcd.setCursor(10,30);
//M5.Lcd.print("Balise : ");
M5.Lcd.setCursor(10,0);
M5.Lcd.print("Angle 1 : ");
M5.Lcd.setCursor(10,20);
M5.Lcd.print("Angle 2 : ");
M5.Lcd.setCursor(10,40);
M5.Lcd.print("Angle 3 : ");
//M5.Lcd.setCursor(10,110);
//M5.Lcd.print("Frequence 1 : ");
//M5.Lcd.setCursor(10,130);
//M5.Lcd.print("Frequence 2 : ");
//M5.Lcd.setCursor(10,150);
//M5.Lcd.print("Frequence 3 : ");
M5.Lcd.setCursor(0,60);
M5.Lcd.print("A float = ");
M5.Lcd.setCursor(0,80);
M5.Lcd.print("a RAD = ");
M5.Lcd.setCursor(0,100);
M5.Lcd.print("angle = ");
M5.Lcd.setCursor(10,120);
M5.Lcd.print("Status : ");
M5.Lcd.setCursor(160,180);
M5.Lcd.print("X = ");
M5.Lcd.setCursor(160,210);
M5.Lcd.print("Y = ");
}
void loop() {
//Effectue a chaque tour ........................
if(data_i2C[13] != 1){
Nb_Balises = 0;
Balise_0 = false;
Balise_1 = false;
Balise_2 = false;
Calcul_Valide = false;
uint8_t etat_balises = (Balise_0 | Balise_1 <<1 | Balise_2 <<2 | Calcul_Valide <<3);
I2C_envoi_8bits(etat_balises,0);
}
if ((Old_Nb_tours != Nb_tours) && (Trigger_Balises)){
Old_Nb_tours = Nb_tours;
if (!Balise_Valide){
Balise_Valide = true;
rapport();
}
//_____________________________________________ gestion I2C et Data sent
if(Xr>0){
Angle_B1 = ((Balise[0][1] + 10000 - alignement) % 10000) * CONV; // lorsque le robot est orienté vers la balise, angle codeur = 0
//calc1 = (Y1-Yr)*1000/Xr;
//Angle_Ref_Theorique = atan(calc1/1000); // angle théorique entre axe X et alignement vers balise depuis la position X, Y
calc1 = Xr*1000/(Y1-Yr);
Angle_Ref_Theorique = atan(calc1/1000); // angle théorique entre axe Y et alignement vers balise depuis la position X, Y
//calc2 = fmod(((Angle_B1/pi2*360)+360 - ((CONV2-Angle_Ref_Theorique)/pi2*360)),360); // angle codeur - (90°-angle theorique mais sur Y) modulo 360° et oui le modulo ne prend que de l'entier...
calc2 = fmod(((Angle_B1/pi2*360)+360 - (Angle_Ref_Theorique/pi2*360)),360); // angle codeur - angle theorique sur Y) modulo 360° et oui le modulo ne prend que de l'entier...
Angle_Robot_RAD = calc2/360*pi2; // en radian
Angle_Robot_Deg_int = calc2; // arrondi des degres dans un entier
Angle_Robot_Deg = calc2; // angle d'orientation robot en degres (0 sur l'axe Y)
}
uint8_t etat_balises = (Balise_0 | Balise_1 <<1 | Balise_2 <<2 | Calcul_Valide <<3);
I2C_envoi_8bits(etat_balises,0);
// TODO: Mettre Xr et Yr dans la mémoire I2C ################################
I2C_envoi_32bits(Xr, 1);
I2C_envoi_32bits(Yr, 5);
//I2C_envoi_32bits(Angle_Robot_RAD, 9);
I2C_envoi_32bits(Angle_Robot_Deg_int, 9);
//_____________________________________________
if (Nb_Balises == 3) traitement_donnees(); //calcul des coordonnees si 3 balises
affichage_resultats();
checkForClient();
Nb_Balises = 0;
Balise_0 = false;
Balise_1 = false;
Balise_2 = false;
for (int i = 0; i <= (2); i++) {
//Remise à zero des balises
Balise[i][0] = 0;
Balise[i][1] = 0;
}
vitesse_moteur();
}
// Si le robot n'est pas immobile, on invalide les balises.
//________________________________________
}
void rapport(){
Serial.print("Frequence ");
Serial.print(Frequence_Balise);
Serial.print(" / Pulses ");
Serial.print(Nb_Pulses);
Serial.print("/ Angle 1 ");
Serial.print(A_Depart_Balise);
Serial.print("/ Angle 2 ");
Serial.println(A_Fin_Balise);
}
void vitesse_moteur() {
if ((millis() - Temps_Tour) < 500){ //250 millisecondes par tour correspond à la vitesse de rotation desiree
Pulse_Moteur ++;
}
else {
Pulse_Moteur --;
}
ledcWrite(0, Pulse_Moteur); // Ajustement de la vitesse
Temps_Tour = millis();
}
void affichage_resultats() {
// affichage des resultats .........................
//M5.Lcd.setCursor(140,10);
//M5.Lcd.print(Nb_tours);
//M5.Lcd.print(" ");
//M5.Lcd.setCursor(140,30);
//M5.Lcd.print(Nb_Balises);
//M5.Lcd.print(" ");
M5.Lcd.setCursor(140,0);
M5.Lcd.print(Balise[0][1]);
//M5.Lcd.print(" / ");
//M5.Lcd.print(Angle_B[0][3]);
M5.Lcd.print(" ");
M5.Lcd.setCursor(140,20);
M5.Lcd.print(Balise[1][1]);
//M5.Lcd.print(" / ");
// M5.Lcd.print(Angle_B[1][3]);
M5.Lcd.print(" ");
M5.Lcd.setCursor(140,40);
M5.Lcd.print(Balise[2][1]);
M5.Lcd.print(" ");
M5.Lcd.setCursor(140,120);
M5.Lcd.print(Balise_0);
M5.Lcd.setCursor(150,120);
M5.Lcd.print(Balise_1);
M5.Lcd.setCursor(160,120);
M5.Lcd.print(Balise_2);
// M5.Lcd.print(" / ");
// M5.Lcd.print(Angle_B[2][3]);
M5.Lcd.print(" ");
//M5.Lcd.setCursor(200,110);
//M5.Lcd.print(Balise[0][0]);
//M5.Lcd.print(" ");
//M5.Lcd.setCursor(200,130);
//M5.Lcd.print(Balise[1][0]);
//M5.Lcd.print(" ");
//M5.Lcd.setCursor(200,150);
//M5.Lcd.print(Balise[2][0]);
//M5.Lcd.print(" ");
M5.Lcd.setCursor(150,60);
M5.Lcd.print(Angle_B1);
M5.Lcd.setCursor(150,80);
M5.Lcd.print(Angle_Ref_Theorique);
M5.Lcd.setCursor(150,100);
M5.Lcd.print(Angle_Robot_Deg);
M5.Lcd.print(" ° ");
M5.Lcd.setCursor(200,180);
M5.Lcd.print(Xr);
M5.Lcd.print(" mm ");
M5.Lcd.setCursor(200,210);
M5.Lcd.print(Yr);
M5.Lcd.print(" mm ");
}
void checkForClient(){
WiFiClient client = server.available();
if (client) {
while (client.connected()) {
if (client.available()) {
char c = client.read();
if (c == '\n') {
// fin du message
client.println("HTTP/1.1 200 OK");
client.println("Content-Type: text/html");
client.println("Connection: close");
client.println();
client.println("<!DOCTYPE HTML>");
client.println("<meta http-equiv='Refresh' content='2'>");
client.print("<html>");
//client.print("Nb tours : ");
//client.print(Nb_tours);
//client.print("<BR>");
//client.print("Balise : ");
//client.print(Nb_Balises);
//client.print("<BR>");
client.print("Angle 1 : ");
client.print(Balise[0][1]);
client.print("<BR>");
client.print("Angle 2 : ");
client.print(Balise[1][1]);
client.print("<BR>");
client.print("Angle 3 : ");
client.print(Balise[2][1]);
client.print("<BR>");
//client.print("Frequence 1 : ");
//client.print(Balise[0][0]);
//client.print("<BR>");
//client.print("Frequence 2 : ");
//client.print(Balise[1][0]);
//client.print("<BR>");
//client.print("Frequence 3 : ");
//client.print(Balise[2][0]);
//client.print("<BR>");
client.print("X = ");
if (Xr < 3000) client.print(Xr);
client.println(" mm");
client.print("<BR>");
client.print("Y = ");
if (Yr < 3000) client.print(Yr);
client.println(" mm");
client.println("</html>");
break;
}
}
else {
break;
}
}
delay(10); // give the web browser time to receive the data
client.stop(); // clos la connection
delay(10);
}
}

Binary file not shown.