Initialisation de l'ADXRS453 : OK

This commit is contained in:
Samuel 2022-10-27 19:49:16 +02:00
parent 3137dc5583
commit c8e6912e89
5 changed files with 178 additions and 66 deletions

View File

@ -11,7 +11,10 @@ gyro.c
Temps.c
Servomoteur.c
gyro_L3GD20H.c
gyro_ADXRS453.c
)
add_definitions(-DGYRO_ADXRS453)
pico_enable_stdio_usb(test 1)
pico_enable_stdio_uart(test 1)
pico_add_extra_outputs(test)

5
gyro.c
View File

@ -7,7 +7,7 @@
#include "Temps.h"
#include "gyro.h"
#define GYRO_L3GD20H
#ifdef GYRO_L3GD20H
#include "gyro_L3GD20H.h"
@ -62,11 +62,12 @@ void Gyro_Init(void){
printf("vitesse SPI : %d\n", speed);
spi_set_format(spi0, 8, SPI_CPHA_1, SPI_CPOL_1, SPI_MSB_FIRST);
spi_set_format(spi0, 8, SPI_CPHA_0, SPI_CPOL_0, SPI_MSB_FIRST);
// Test de la présence du gyroscope :
if(gyro_init_check()){
puts("Gyroscope non trouve");
while(1); // On s'arrête là !
}else{
puts("Gyroscope trouve");
if(!gyro_config()){

View File

@ -1,7 +1,9 @@
#include "gyro_ADXRS473.h"
#include "gyro_ADXRS453.h"
#include "spi_nb.h"
#include <stdio.h>
#ifdef GYRO_ADXRS453
#define NB_MAX_CHAR_GYRO 4
struct {
@ -16,12 +18,28 @@ struct {
unsigned short PWR:1;
unsigned short CST:1;
unsigned short CHK:1;
signed int rateData;
int16_t rateData;
} Gyro_SensorData;
void Gyro_traitementDonnees(unsigned char * tamponRecu);
unsigned char pariteOctet(unsigned char octet);
int gyro_spi_wr_32bits(uint8_t *transmit_buffer, uint8_t *recieve_buffer){
int nb_recu;
cs_select();
if(spi_nb_write_data(spi0, (uint16_t*) transmit_buffer, 4) == SPI_ERR_TRANSMIT_FIFO_FULL){
puts("gyro_spi_wr_32bits: SPI_ERR_TRANSMIT_FIFO_FULL");
}else{
while(spi_nb_busy(spi0));
nb_recu = spi_nb_read_data_8bits(spi0, recieve_buffer);
}
if(nb_recu != 4){
puts("gyro_spi_wr_32bits: nb_recu incohérent");
}
cs_deselect();
}
int gyro_read_register_blocking(uint8_t registrer, uint8_t *tampon, uint8_t nb_a_lire){
uint8_t tampon_envoi[4]="\0\0\0\0";
int nb_recu;
@ -33,6 +51,9 @@ int gyro_read_register_blocking(uint8_t registrer, uint8_t *tampon, uint8_t nb_a
nb_recu = spi_read_blocking(spi0, 0, tampon, nb_a_lire);
cs_deselect();
// A faire passer à 0,1 µs
sleep_us(1);
// lire reponse N
cs_select();
spi_write_blocking(spi0, tampon_envoi, 4);
@ -41,90 +62,172 @@ int gyro_read_register_blocking(uint8_t registrer, uint8_t *tampon, uint8_t nb_a
}
void affiche_tampon_32bits(uint8_t *tampon){
uint32_t valeur;
valeur = (tampon[0] << 24) + (tampon[1] << 16) + (tampon[2]<<8) + tampon[3];
printf("Tampon: %#010x\n", valeur);
}
int gyro_get_sensor_data(){
uint8_t tampon_envoi[5]="\0\0\0\0\0";
uint8_t tampon_reception[5]="\0\0\0\0\0";
tampon_envoi[0] = 0x30;
tampon_envoi[1] = 0x00;
tampon_envoi[2] = 0x00;
tampon_envoi[3] = 0x01;
gyro_spi_wr_32bits(tampon_envoi, tampon_reception);
Gyro_traitementDonnees(tampon_reception);
if(Gyro_SensorData.SQ != 0x4){
printf("Gyro_Data - SQ bits (%#01x)!= 0x4\n", Gyro_SensorData.SQ);
affiche_tampon_32bits(tampon_reception);
return 1;
}
if(Gyro_SensorData.ST != 0x1){
printf("Gyro_Data - Status (%#01x)!= 0x1\n", Gyro_SensorData.ST);
affiche_tampon_32bits(tampon_reception);
return 1;
}
affiche_tampon_32bits(tampon_reception);
return 0;
}
int gyro_init_check(){
// Renvoi 0 si l'initialisation s'est bien passée
// Renvoi 1 si le gyroscope n'a pas répondu
uint8_t tampon[5]="\0\0\0\0\0";
gyro_read_register_blocking(0x0C, tampon, 1);
Gyro_traitementDonnees(tampon);
uint8_t tampon_envoi[5]="\0\0\0\0\0";
uint8_t tampon_reception[5]="\0\0\0\0\0";
printf("Init check : %#06x\n", Gyro_SensorData.rateData);
// On suit les instructions de la page 20 de la fiche technique
sleep_ms(100); // init du gyro
printf("T=100ms\n");
tampon_envoi[0] = 0x30;
tampon_envoi[1] = 0x00;
tampon_envoi[2] = 0x00;
tampon_envoi[3] = 0x02;
/* if(tampon[0] == 0xd7){
return 0;
}*/
printf("envoi : ");
affiche_tampon_32bits(tampon_envoi);
gyro_spi_wr_32bits(tampon_envoi, tampon_reception);
Gyro_traitementDonnees(tampon_reception);
printf("recoi : ");
affiche_tampon_32bits(tampon_reception);
sleep_ms(50); // t=150ms
printf("T=150ms\n");
tampon_envoi[0] = 0x30;
tampon_envoi[1] = 0x00;
tampon_envoi[2] = 0x00;
tampon_envoi[3] = 0x01;
printf("envoi : ");
affiche_tampon_32bits(tampon_envoi);
gyro_spi_wr_32bits(tampon_envoi, tampon_reception);
Gyro_traitementDonnees(tampon_reception);
affiche_tampon_32bits(tampon_reception);
Gyro_traitementDonnees(tampon_reception);
if(Gyro_SensorData.SQ != 0b100){
printf("Gyro_Init - SQ bits (%#01x)!= 0x4", Gyro_SensorData.SQ);
return 1;
}
sleep_ms(50); // t=200ms
printf("T=200ms\n");
tampon_envoi[0] = 0x30;
tampon_envoi[1] = 0x00;
tampon_envoi[2] = 0x00;
tampon_envoi[3] = 0x01;
printf("envoi : ");
affiche_tampon_32bits(tampon_envoi);
gyro_spi_wr_32bits(tampon_envoi, tampon_reception);
Gyro_traitementDonnees(tampon_reception);
printf("recoi : ");
affiche_tampon_32bits(tampon_reception);
sleep_us(1); // t=200ms + TD
printf("T=200ms+TD\n");
tampon_envoi[0] = 0x30;
tampon_envoi[1] = 0x00;
tampon_envoi[2] = 0x00;
tampon_envoi[3] = 0x01;
gyro_spi_wr_32bits(tampon_envoi, tampon_reception);
Gyro_traitementDonnees(tampon_reception);
if(Gyro_SensorData.SQ != 0x4){
printf("Gyro_Init - SQ bits (%#01x)!= 0x4\n", Gyro_SensorData.SQ);
affiche_tampon_32bits(tampon_reception);
return 1;
}
if(Gyro_SensorData.ST != 0x1){
printf("Gyro_Init - Status (%#01x)!= 0x1\n", Gyro_SensorData.ST);
affiche_tampon_32bits(tampon_reception);
return 1;
}
affiche_tampon_32bits(tampon_reception);
sleep_us(1); // t=200ms + 2TD
printf("T=200ms+2TD\n");
tampon_envoi[0] = 0x30;
tampon_envoi[1] = 0x00;
tampon_envoi[2] = 0x00;
tampon_envoi[3] = 0x01;
gyro_spi_wr_32bits(tampon_envoi, tampon_reception);
Gyro_traitementDonnees(tampon_reception);
if(Gyro_SensorData.SQ != 0x4){
printf("Gyro_Init - SQ bits (%#01x)!= 0x4\n", Gyro_SensorData.SQ);
affiche_tampon_32bits(tampon_reception);
return 1;
}
if(Gyro_SensorData.ST != 0x1){
printf("Gyro_Init - Status (%#01x)!= 0x1\n", Gyro_SensorData.ST);
affiche_tampon_32bits(tampon_reception);
return 1;
}
affiche_tampon_32bits(tampon_reception);
return 0;
}
int gyro_config(){
// Registre CTRL1
// DR : 11
// BW : 10
// PD : 1
// Zen : 1
// Yen : 1
// Xen : 1
uint8_t config = 0b11101111;
uint16_t tampon[2] = {0x20, config};
uint8_t tampon2[10]="\0\0\0\0\0\0\0\0\0";
int statu, nb_read;
//while(spi_nb_busy(spi0) == SPI_BUSY);
cs_select();
int rep = spi_nb_write_data(spi0, tampon, 2);
if(rep == SPI_ERR_TRANSMIT_FIFO_FULL){
printf("Erreur: spi_read_register: SPI_ERR_TRANSMIT_FIFO_FULL\n");
//return statu;
}
while(spi_nb_busy(spi0));
cs_deselect();
int nb_lu = spi_read_register(spi0, 0x20, tampon2, 1);
printf("Nb lu: %d\n", nb_lu);
if(tampon2[1] == config){
//puts("gyro_config ok !");
return 0;
}else{
//printf("gyro_config FAILED ! :%#4x\n", tampon2[1]);
return 1;
}
// Registre
}
void gyro_get_vitesse_brute(struct t_angle_gyro* angle_gyro, struct t_angle_gyro* angle_gyro_moy){
uint8_t tampon[10]="\0\0\0\0\0\0\0\0\0";
int16_t rot_x, rot_y, rot_z;
spi_read_register(spi0, 0x28, tampon, 6);
rot_x = -(tampon[1] + (tampon[2] << 8));
rot_y = -(tampon[3] + (tampon[4] << 8));
rot_z = -(tampon[5] + (tampon[6] << 8));
if(gyro_get_sensor_data()){
printf("GYRO : Erreur d'acquisition !\n");
}
rot_x = 0;
rot_y = 0;
rot_z = Gyro_SensorData.rateData;
if(angle_gyro_moy == NULL){
angle_gyro->rot_x = (int32_t) rot_x * 32;
angle_gyro->rot_y = (int32_t) rot_y * 32;
angle_gyro->rot_z = (int32_t) rot_z * 32;
angle_gyro->rot_x = 0;
angle_gyro->rot_y = 0;
angle_gyro->rot_z = rot_z * 32;
}else{
angle_gyro->rot_x = (int32_t) rot_x * 32 - angle_gyro_moy->rot_x;
angle_gyro->rot_y = (int32_t) rot_y * 32 - angle_gyro_moy->rot_y;
angle_gyro->rot_x = 0;
angle_gyro->rot_y = 0;
angle_gyro->rot_z = (int32_t) rot_z * 32 - angle_gyro_moy->rot_z;
}
}
void gyro_get_vitesse_normalisee(struct t_angle_gyro* _vitesse_angulaire,
struct t_angle_gyro_double * _vitesse_gyro){
_vitesse_gyro->rot_x = (double)_vitesse_angulaire->rot_x * 0.00875 / 32.0;
_vitesse_gyro->rot_y = (double)_vitesse_angulaire->rot_y * 0.00875 / 32.0;
_vitesse_gyro->rot_z = (double)_vitesse_angulaire->rot_z * 0.00875 / 32.0;
_vitesse_gyro->rot_x = (double)_vitesse_angulaire->rot_x * 0.0125 / 32.0;
_vitesse_gyro->rot_y = (double)_vitesse_angulaire->rot_y * 0.0125 / 32.0;
_vitesse_gyro->rot_z = (double)_vitesse_angulaire->rot_z * 0.0125 / 32.0;
}
@ -168,7 +271,7 @@ unsigned char pariteOctet(unsigned char octet){
return parite;
}
void Gyro_traitementDonnees(unsigned char * tamponRecu){
void Gyro_traitementDonnees(uint8_t * tamponRecu){
Gyro_SensorData.SQ = (tamponRecu[0]>>5) & 0x07;
Gyro_SensorData.P0 = (tamponRecu[0]>>4) & 0x01;
Gyro_SensorData.ST = (tamponRecu[0]>>2) & 0x03;
@ -289,3 +392,4 @@ int Gyro_init(){
return erreur_gyro;
}
*/
#endif

View File

@ -2,6 +2,8 @@
#include "spi_nb.h"
#include <stdio.h>
#ifdef GYRO_L3GD20H
int gyro_read_register_blocking(uint8_t registrer, uint8_t *tampon, uint8_t nb_a_lire){
uint8_t reg = registrer | 0xC0 ;
int nb_recu;
@ -94,3 +96,5 @@ void gyro_get_vitesse_normalisee(struct t_angle_gyro* _vitesse_angulaire,
_vitesse_gyro->rot_y = (double)_vitesse_angulaire->rot_y * 0.00875 / 32.0;
_vitesse_gyro->rot_z = (double)_vitesse_angulaire->rot_z * 0.00875 / 32.0;
}
#endif