RPiPico-Holonome2023/gyro_ADXRS453.c

395 lines
11 KiB
C

#include "gyro_ADXRS453.h"
#include "spi_nb.h"
#include <stdio.h>
#ifdef GYRO_ADXRS453
#define NB_MAX_CHAR_GYRO 4
struct {
unsigned short SQ:3;
unsigned short ST:2;
unsigned short P0:1;
unsigned short P1:1;
unsigned short PLL:1;
unsigned short Q:1;
unsigned short NVM:1;
unsigned short POR:1;
unsigned short PWR:1;
unsigned short CST:1;
unsigned short CHK:1;
int16_t rateData;
} Gyro_SensorData;
void Gyro_traitementDonnees(unsigned char * tamponRecu);
unsigned char pariteOctet(unsigned char octet);
int gyro_spi_wr_32bits(uint8_t *transmit_buffer, uint8_t *recieve_buffer){
int nb_recu;
cs_select();
if(spi_nb_write_data(spi0, (uint16_t*) transmit_buffer, 4) == SPI_ERR_TRANSMIT_FIFO_FULL){
puts("gyro_spi_wr_32bits: SPI_ERR_TRANSMIT_FIFO_FULL");
}else{
while(spi_nb_busy(spi0));
nb_recu = spi_nb_read_data_8bits(spi0, recieve_buffer);
}
if(nb_recu != 4){
puts("gyro_spi_wr_32bits: nb_recu incohérent");
}
cs_deselect();
}
int gyro_read_register_blocking(uint8_t registrer, uint8_t *tampon, uint8_t nb_a_lire){
uint8_t tampon_envoi[4]="\0\0\0\0";
int nb_recu;
tampon_envoi[0] = registrer;
// Envoie commande N
cs_select();
spi_write_blocking(spi0, tampon_envoi, 4);
nb_recu = spi_read_blocking(spi0, 0, tampon, nb_a_lire);
cs_deselect();
// A faire passer à 0,1 µs
sleep_us(1);
// lire reponse N
cs_select();
spi_write_blocking(spi0, tampon_envoi, 4);
nb_recu = spi_read_blocking(spi0, 0, tampon, nb_a_lire);
cs_deselect();
}
void affiche_tampon_32bits(uint8_t *tampon){
uint32_t valeur;
valeur = (tampon[0] << 24) + (tampon[1] << 16) + (tampon[2]<<8) + tampon[3];
printf("Tampon: %#010x\n", valeur);
}
int gyro_get_sensor_data(){
uint8_t tampon_envoi[5]="\0\0\0\0\0";
uint8_t tampon_reception[5]="\0\0\0\0\0";
tampon_envoi[0] = 0x30;
tampon_envoi[1] = 0x00;
tampon_envoi[2] = 0x00;
tampon_envoi[3] = 0x01;
gyro_spi_wr_32bits(tampon_envoi, tampon_reception);
Gyro_traitementDonnees(tampon_reception);
if(Gyro_SensorData.SQ != 0x4){
printf("Gyro_Data - SQ bits (%#01x)!= 0x4\n", Gyro_SensorData.SQ);
affiche_tampon_32bits(tampon_reception);
return 1;
}
if(Gyro_SensorData.ST != 0x1){
printf("Gyro_Data - Status (%#01x)!= 0x1\n", Gyro_SensorData.ST);
affiche_tampon_32bits(tampon_reception);
return 1;
}
affiche_tampon_32bits(tampon_reception);
return 0;
}
int gyro_init_check(){
// Renvoi 0 si l'initialisation s'est bien passée
// Renvoi 1 si le gyroscope n'a pas répondu
uint8_t tampon_envoi[5]="\0\0\0\0\0";
uint8_t tampon_reception[5]="\0\0\0\0\0";
// On suit les instructions de la page 20 de la fiche technique
sleep_ms(100); // init du gyro
printf("T=100ms\n");
tampon_envoi[0] = 0x30;
tampon_envoi[1] = 0x00;
tampon_envoi[2] = 0x00;
tampon_envoi[3] = 0x02;
printf("envoi : ");
affiche_tampon_32bits(tampon_envoi);
gyro_spi_wr_32bits(tampon_envoi, tampon_reception);
Gyro_traitementDonnees(tampon_reception);
printf("recoi : ");
affiche_tampon_32bits(tampon_reception);
sleep_ms(50); // t=150ms
printf("T=150ms\n");
tampon_envoi[0] = 0x30;
tampon_envoi[1] = 0x00;
tampon_envoi[2] = 0x00;
tampon_envoi[3] = 0x01;
printf("envoi : ");
affiche_tampon_32bits(tampon_envoi);
gyro_spi_wr_32bits(tampon_envoi, tampon_reception);
Gyro_traitementDonnees(tampon_reception);
affiche_tampon_32bits(tampon_reception);
Gyro_traitementDonnees(tampon_reception);
if(Gyro_SensorData.SQ != 0b100){
printf("Gyro_Init - SQ bits (%#01x)!= 0x4", Gyro_SensorData.SQ);
return 1;
}
sleep_ms(50); // t=200ms
printf("T=200ms\n");
tampon_envoi[0] = 0x30;
tampon_envoi[1] = 0x00;
tampon_envoi[2] = 0x00;
tampon_envoi[3] = 0x01;
printf("envoi : ");
affiche_tampon_32bits(tampon_envoi);
gyro_spi_wr_32bits(tampon_envoi, tampon_reception);
Gyro_traitementDonnees(tampon_reception);
printf("recoi : ");
affiche_tampon_32bits(tampon_reception);
sleep_us(1); // t=200ms + TD
printf("T=200ms+TD\n");
tampon_envoi[0] = 0x30;
tampon_envoi[1] = 0x00;
tampon_envoi[2] = 0x00;
tampon_envoi[3] = 0x01;
gyro_spi_wr_32bits(tampon_envoi, tampon_reception);
Gyro_traitementDonnees(tampon_reception);
if(Gyro_SensorData.SQ != 0x4){
printf("Gyro_Init - SQ bits (%#01x)!= 0x4\n", Gyro_SensorData.SQ);
affiche_tampon_32bits(tampon_reception);
return 1;
}
if(Gyro_SensorData.ST != 0x1){
printf("Gyro_Init - Status (%#01x)!= 0x1\n", Gyro_SensorData.ST);
affiche_tampon_32bits(tampon_reception);
return 1;
}
affiche_tampon_32bits(tampon_reception);
sleep_us(1); // t=200ms + 2TD
printf("T=200ms+2TD\n");
tampon_envoi[0] = 0x30;
tampon_envoi[1] = 0x00;
tampon_envoi[2] = 0x00;
tampon_envoi[3] = 0x01;
gyro_spi_wr_32bits(tampon_envoi, tampon_reception);
Gyro_traitementDonnees(tampon_reception);
if(Gyro_SensorData.SQ != 0x4){
printf("Gyro_Init - SQ bits (%#01x)!= 0x4\n", Gyro_SensorData.SQ);
affiche_tampon_32bits(tampon_reception);
return 1;
}
if(Gyro_SensorData.ST != 0x1){
printf("Gyro_Init - Status (%#01x)!= 0x1\n", Gyro_SensorData.ST);
affiche_tampon_32bits(tampon_reception);
return 1;
}
affiche_tampon_32bits(tampon_reception);
return 0;
}
int gyro_config(){
return 0;
}
void gyro_get_vitesse_brute(struct t_angle_gyro* angle_gyro, struct t_angle_gyro* angle_gyro_moy){
uint8_t tampon[10]="\0\0\0\0\0\0\0\0\0";
int16_t rot_x, rot_y, rot_z;
if(gyro_get_sensor_data()){
printf("GYRO : Erreur d'acquisition !\n");
}
rot_x = 0;
rot_y = 0;
rot_z = Gyro_SensorData.rateData;
if(angle_gyro_moy == NULL){
angle_gyro->rot_x = 0;
angle_gyro->rot_y = 0;
angle_gyro->rot_z = rot_z * 32;
}else{
angle_gyro->rot_x = 0;
angle_gyro->rot_y = 0;
angle_gyro->rot_z = (int32_t) rot_z * 32 - angle_gyro_moy->rot_z;
}
}
void gyro_get_vitesse_normalisee(struct t_angle_gyro* _vitesse_angulaire,
struct t_angle_gyro_double * _vitesse_gyro){
_vitesse_gyro->rot_x = (double)_vitesse_angulaire->rot_x * 0.0125 / 32.0;
_vitesse_gyro->rot_y = (double)_vitesse_angulaire->rot_y * 0.0125 / 32.0;
_vitesse_gyro->rot_z = (double)_vitesse_angulaire->rot_z * 0.0125 / 32.0;
}
inline unsigned char Gyro_commande_SensorData(unsigned char autotest){
// On met SQ2 à 1 afin de différencier facilement une erreur et des données
uint8_t tamponGyroscopeEnvoi[4];
tamponGyroscopeEnvoi[0] = 0x30;
tamponGyroscopeEnvoi[1] = 0x00;
tamponGyroscopeEnvoi[2] = 0x00;
if (autotest){
tamponGyroscopeEnvoi[3] = 0x03;
}else{
tamponGyroscopeEnvoi[3] = 0x01;
}
// La parité, dans ce cas est triviale, autant prévoir tous les cas
//Gyro_commande_PariteData(tamponGyroscopeEnvoi);
//return SPI_envData(tamponGyroscopeEnvoi);
}
void Gyro_commande_PariteData(unsigned char* tampon){
unsigned char parite=0,i;
// Obtention de la parité actuelle
for(i=0 ; i< NB_MAX_CHAR_GYRO ; i++){
parite ^= pariteOctet(tampon[i]);
}
// On veut une parité impaire
parite ^= 0x01;
// On insere ce bit dans le message, au bon endroit
tampon[NB_MAX_CHAR_GYRO-1] = tampon[NB_MAX_CHAR_GYRO-1] | parite;
}
unsigned char pariteOctet(unsigned char octet){
unsigned char parite=0,i;
for (i=0 ; i<8 ; i++){
parite ^= octet & 0x01;
octet = octet >> 1;
}
return parite;
}
void Gyro_traitementDonnees(uint8_t * tamponRecu){
Gyro_SensorData.SQ = (tamponRecu[0]>>5) & 0x07;
Gyro_SensorData.P0 = (tamponRecu[0]>>4) & 0x01;
Gyro_SensorData.ST = (tamponRecu[0]>>2) & 0x03;
Gyro_SensorData.rateData = (int)
( (0xC000 &((unsigned int) (tamponRecu[0] & 0x03)<<14)) |
( 0x3FC0 & ((unsigned int) tamponRecu[1] << 6)) |
( 0x003F & (unsigned int) ( tamponRecu[2] >> 2)));
Gyro_SensorData.PLL = (tamponRecu[3] & 0x80) >> 7;
Gyro_SensorData.Q = (tamponRecu[3] & 0x40) >> 6;
Gyro_SensorData.NVM = (tamponRecu[3] & 0x20) >> 5;
Gyro_SensorData.POR = (tamponRecu[3] & 0x10) >> 4;
Gyro_SensorData.PWR = (tamponRecu[3] & 0x08) >> 3;
Gyro_SensorData.CST = (tamponRecu[3] & 0x04) >> 2;
Gyro_SensorData.CHK = (tamponRecu[3] & 0x02) >> 1;
Gyro_SensorData.P1 = (tamponRecu[3] & 0x01);
}
/*
unsigned char Gyro_gestion(void){
Gyro_commande_SensorData(0);
while(!SPI_recData(GyroscopeReception));
Gyro_traitementDonnees(GyroscopeReception);
if (Gyro_SensorData.SQ & 0x04){
Gyro_Angle +=(long) (Gyro_SensorData.rateData - angle0);
//Gyro_Angle = angle0;
}else{
Gyro_Angle = (long)0x3333;
}
return 0;
}
inline unsigned char Gyro_gestion_nb(){
if(SPI_recData(GyroscopeReception)){
Gyro_traitementDonnees(GyroscopeReception);
if (Gyro_SensorData.SQ & 0x04)
// calcul du nouvel angle
// TODO : Améliorer la stabilitée en augmentant la précision
Gyro_Angle +=(long) ((long)Gyro_SensorData.rateData - (long)angle0);
return 0;
}
return 1;
}
int Gyro_getAngle(void){
// 80° par secondes
// 5 kHz => 200 µs
// Gyro_Angle en 1,6 e-2 degré
return (int)(-Gyro_Angle / 5000 / 80);
}
long Gyro_getRawAngle(void){
// 80° par secondes
// 5 kHz => 200 µs
// Gyro_Angle en 1,6 e-2 degré
return Gyro_Angle ;
}
long double Gyro_getAngleRadian(void){
// 80° par secondes
// 5 kHz => 200 µs
// Gyro_Angle en 1,6 e-2 degré
return -Gyro_Angle * GYRO_COEF_RADIAN_5kHz;
}
unsigned char * Gyro_getRawData(){
return GyroscopeReception;
}
int Gyro_init(){
long long calcul_angle0;
int i, erreur_gyro;
Gyro_Timer_ms=100;
while(Gyro_Timer_ms);
// Envoie message auto-test des test
while(!Gyro_commande_SensorData(1));
while(!SPI_recData(GyroscopeReception));
// Attente 50 ms - les tests doivent indiquer des erreur
Gyro_Timer_ms=50;
while(Gyro_Timer_ms);
while(!Gyro_commande_SensorData(0));
while(!SPI_recData(GyroscopeReception));
// Attente 50 ms - les erreurs doivent s'être effacées
Gyro_Timer_ms=50;
while(Gyro_Timer_ms);
while(!Gyro_commande_SensorData(0));
while(!SPI_recData(GyroscopeReception));
// Calibration du gyroscope
calcul_angle0 = 0;
i=0;
erreur_gyro = 0;
while((i<NB_ACQ_CALIBRATION) && (erreur_gyro < NB_MAX_ERREUR_GYRO)){
while(!Gyro_commande_SensorData(0));
while(!SPI_recData(GyroscopeReception));
Gyro_traitementDonnees(GyroscopeReception);
if (Gyro_SensorData.SQ & 0x04){
calcul_angle0 += Gyro_SensorData.rateData;
erreur_gyro = 0;
i++;
}else{
erreur_gyro++;
}
__delay32(2000); // 50 µs
}
if (erreur_gyro < NB_MAX_ERREUR_GYRO){
erreur_gyro = 0;
// TODO : Améliorer la stabilitée en augmentant la précision
angle0 = (long)(calcul_angle0 / NB_ACQ_CALIBRATION);
Gyro_Pret=1;
}else{
erreur_gyro = 1;
}
return erreur_gyro;
}
*/
#endif