PAMI_2024/Trajet.c

220 lines
6.8 KiB
C
Raw Normal View History

#include <math.h>
#include "Geometrie.h"
#include "Trajectoire.h"
#include "Trajet.h"
#include "Asser_Position.h"
#include "Asser_Moteurs.h"
#include "Temps.h"
float Trajet_calcul_vitesse(float temps_s);
int Trajet_terminee(float abscisse);
float abscisse; // Position entre 0 et 1 sur la trajectoire
float position_mm; // Position en mm sur la trajectoire
float vitesse_mm_s;
float vitesse_max_trajet_mm_s=500;
float acceleration_mm_ss;
const float acceleration_mm_ss_obstacle = 500;
struct trajectoire_t trajet_trajectoire;
struct position_t position_consigne;
float distance_obstacle_mm;
float distance_fin_trajectoire_mm;
const float distance_pas_obstacle = 2000;
float vitesse_max_contrainte_obstacle;
/// @brief Initialise le module Trajet. A appeler en phase d'initilisation
void Trajet_init(){
Temps_init();
AsserMoteur_Init();
abscisse = 0;
vitesse_mm_s = 0;
position_mm = 0;
Trajet_config(TRAJECT_CONFIG_STD);
}
/// @brief Configure la vitesse maximale et l'acceleration pour les futurs trajets
/// @param _vitesse_max_trajet_mm_s
/// @param _acceleration_mm_ss
void Trajet_config(float _vitesse_max_trajet_mm_s, float _acceleration_mm_ss){
vitesse_max_trajet_mm_s = _vitesse_max_trajet_mm_s;
acceleration_mm_ss = _acceleration_mm_ss;
}
void Trajet_debut_trajectoire(struct trajectoire_t trajectoire){
abscisse = 0;
vitesse_mm_s = 0;
position_mm = 0;
trajet_trajectoire = trajectoire;
Trajet_set_obstacle_mm(DISTANCE_INVALIDE);
}
/// @brief Avance la consigne de position sur la trajectoire
/// @param pas_de_temps_s : temps écoulé depuis le dernier appel en seconde
/// @return TRAJET_EN_COURS ou TRAJET_TERMINE
2024-04-30 15:59:41 +00:00
struct point_xyo_t point;
enum etat_trajet_t Trajet_avance(float pas_de_temps_s){
float distance_mm;
enum etat_trajet_t trajet_etat = TRAJET_EN_COURS;
2024-04-30 15:59:41 +00:00
struct position_t position;
// Calcul de la vitesse
vitesse_mm_s = Trajet_calcul_vitesse(pas_de_temps_s);
// Calcul de l'avancement en mm
distance_mm = vitesse_mm_s * pas_de_temps_s;
position_mm += distance_mm;
// Calcul de l'abscisse sur la trajectoire
abscisse = Trajectoire_avance(&trajet_trajectoire, abscisse, distance_mm);
//set_debug_varf(abscisse);
// Obtention du point consigne
point = Trajectoire_get_point(&trajet_trajectoire, abscisse);
position.x_mm = point.point_xy.x;
position.y_mm = point.point_xy.y;
position.angle_radian = point.orientation;
position_consigne=position;
Asser_Position(position);
if(Trajet_terminee(abscisse)){
Asser_Position_set_Pos_Maintien(position);
trajet_etat = TRAJET_TERMINE;
}
return trajet_etat;
}
void Trajet_stop(float pas_de_temps_s){
vitesse_mm_s = 0;
Trajet_avance(0);
}
/// @brief Savoir si un trajet est terminé est trivial sauf pour les courbes de Bézier
/// où les approximations font que l'abscisse peut ne pas atteindre 1.
/// @param abscisse : abscisse sur la trajectoire
/// @return 1 si le trajet est terminé, 0 sinon
int Trajet_terminee(float abscisse){
/*if(abscisse >= 0.99 ){
return 1;
}*/
if(trajet_trajectoire.type != TRAJECTOIRE_BEZIER){
if(abscisse >= 1 || distance_fin_trajectoire_mm < 0.1){
return 1;
}
}else{
if(abscisse >= 0.99 ){
return 1;
}
}
return 0;
}
/// @brief Envoie la consigne de position calculée par le module trajet. Principalement pour le débug/réglage asservissement.
struct position_t Trajet_get_consigne(){
return position_consigne;
}
/// @brief Calcule la vitesse à partir de laccélération du robot, de la vitesse maximale et de la contrainte en fin de trajectoire
/// @param pas_de_temps_s : temps écoulé en ms
/// @return vitesse déterminée en m/s
float Trajet_calcul_vitesse(float pas_de_temps_s){
float vitesse_max_contrainte;
float distance_contrainte,distance_contrainte_obstacle;
float vitesse;
// Calcul de la vitesse avec acceleration
vitesse = vitesse_mm_s + acceleration_mm_ss * pas_de_temps_s;
// Calcul de la vitesse maximale due à la contrainte en fin de trajectoire (0 mm/s)
// https://poivron-robotique.fr/Consigne-de-vitesse.html
distance_contrainte = Trajectoire_get_longueur_mm(&trajet_trajectoire) - position_mm;
distance_fin_trajectoire_mm=distance_contrainte;
// En cas de dépassement, on veut garder la contrainte, pour l'instant
if(distance_contrainte > 0){
vitesse_max_contrainte = sqrtf(2 * acceleration_mm_ss * distance_contrainte);
}else{
vitesse_max_contrainte = 0;
}
distance_contrainte_obstacle = Trajet_get_obstacle_mm();
if(distance_contrainte_obstacle != DISTANCE_INVALIDE){
vitesse_max_contrainte_obstacle = sqrtf(2 * acceleration_mm_ss_obstacle * distance_contrainte_obstacle);
if(vitesse_max_contrainte_obstacle < vitesse_max_contrainte){
vitesse_max_contrainte = vitesse_max_contrainte_obstacle;
}
}/*
if((Trajet_get_obstacle_mm() != DISTANCE_INVALIDE) && (Trajet_get_obstacle_mm() < 50)){
vitesse = 0;
}*/
// Selection de la vitesse la plus faible
if(vitesse > vitesse_max_contrainte){
vitesse = vitesse_max_contrainte;
}
if(vitesse > vitesse_max_trajet_mm_s){
vitesse = vitesse_max_trajet_mm_s;
}
return vitesse;
}
float Trajet_get_obstacle_mm(void){
return distance_obstacle_mm;
}
void Trajet_set_obstacle_mm(float distance_mm){
distance_obstacle_mm = distance_mm;
}
/// @brief Renvoi l'angle d'avancement du robot dans le référentiel du terrain
/// @return angle en radian.
float Trajet_get_orientation_avance(){
struct point_xyo_t point, point_suivant;
float avance_abscisse = 0.01;
float angle;
if(abscisse >= 1){
return 0;
}
if(abscisse + avance_abscisse >= 1){
avance_abscisse = 1 - abscisse;
}
point = Trajectoire_get_point(&trajet_trajectoire, abscisse);
point_suivant = Trajectoire_get_point(&trajet_trajectoire, abscisse + avance_abscisse);
angle = atan2f(point_suivant.point_xy.y - point.point_xy.y, point_suivant.point_xy.x - point.point_xy.x);
return angle;
}
void Trajet_inverse(){
float old_abscisse = abscisse;
float old_position_mm = position_mm;
Trajectoire_inverse(&trajet_trajectoire);
Trajet_debut_trajectoire(trajet_trajectoire);
abscisse = 1 - old_abscisse;
position_mm = Trajectoire_get_longueur_mm(&trajet_trajectoire) - old_position_mm;
}
float Trajet_get_abscisse(){
return abscisse;
}
/// @brief Indique si le robot est bloqué sur le trajet
/// @return 0 si le robot n'est pas bloqué, 1 s'il est bloqué
uint32_t Trajet_get_bloque(){
if(Trajet_get_obstacle_mm() == DISTANCE_INVALIDE){
return 0;
}
if (vitesse_max_contrainte_obstacle == 0){
return 1;
}
return 0;
}