Gradin_2025/main.c

390 lines
10 KiB
C

/*****
* Copyright (c) 2023 - Poivron Robotique
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "pico/stdlib.h"
#include "pico/multicore.h"
#include "hardware/adc.h"
#include "hardware/spi.h"
#include "hardware/i2c.h"
#include "i2c_slave.h"
#include "Temps.h"
#include "VL53L8_2024.h"
#include "vl53l8cx_api.h"
#include "ws2812.h"
#include <stdio.h>
#include <math.h>
#define LED1PIN 20
#define TIRETTE_PIN 6
#define COULEUR_PIN 4
#define COULEUR_BLEU 1
#define COULEUR_JAUNE 0
#define OFFSET_CAPTEUR_GAUCHE_X_MM (-170)
#define OFFSET_CAPTEUR_DROIT_X_MM (170)
// XIAO RP2040
#define SCK 2
#define MISO 4
#define MOSI 3
#define D0 26
#define D1 27
#define D2 28
#define D3 29
#define SDA 6
#define SCL 7
#define I2C_SLAVE_SDA_PIN SDA
#define I2C_SLAVE_SCL_PIN SCL
#define I2C_SLAVE_ADDRESS 0x19
void affichage(void);
void gestion_affichage(void);
void tension_batterie_init(void);
uint16_t tension_batterie_lire(void);
int get_tirette(int);
int get_couleur(void);
void configure_trajet(int identifiant, int couleur);
void gestion_VL53L8CX(void);
const uint32_t step_ms=1;
float distance1_mm=0, distance2_mm=0;
// DEBUG
extern float abscisse;
extern struct point_xyo_t point;
float vitesse;
VL53L8CX_Configuration gauche, droit;
uint8_t capteur_init(VL53L8CX_Configuration * capteur);
// The slave implements a 256 byte memory. To write a series of bytes, the master first
// writes the memory address, followed by the data. The address is automatically incremented
// for each byte transferred, looping back to 0 upon reaching the end. Reading is done
// sequentially from the current memory address.
static struct
{
uint8_t mem[256];
uint8_t mem_address;
bool mem_address_written;
} context;
// Our handler is called from the I2C ISR, so it must complete quickly. Blocking calls /
// printing to stdio may interfere with interrupt handling.
static void i2c_slave_handler(i2c_inst_t *i2c, i2c_slave_event_t event) {
switch (event) {
case I2C_SLAVE_RECEIVE: // master has written some data
if (!context.mem_address_written) {
// writes always start with the memory address
context.mem_address = i2c_read_byte_raw(i2c);
context.mem_address_written = true;
} else {
// save into memory
context.mem[context.mem_address] = i2c_read_byte_raw(i2c);
context.mem_address++;
}
break;
case I2C_SLAVE_REQUEST: // master is requesting data
// load from memory
i2c_write_byte_raw(i2c, context.mem[context.mem_address]);
context.mem_address++;
break;
case I2C_SLAVE_FINISH: // master has signalled Stop / Restart
context.mem_address_written = false;
break;
default:
break;
}
}
void i2c_envoi_32bits(int32_t value, char adresse){
context.mem[adresse] = value >> 24;
context.mem[adresse+1] = (value >> 16) & 0xFF;
context.mem[adresse+2] = (value >> 8) & 0xFF;
context.mem[adresse+3] = value & 0xFF;
}
static void i2c_setup_slave() {
gpio_init(I2C_SLAVE_SDA_PIN);
gpio_set_function(I2C_SLAVE_SDA_PIN, GPIO_FUNC_I2C);
gpio_pull_up(I2C_SLAVE_SDA_PIN);
gpio_init(I2C_SLAVE_SCL_PIN);
gpio_set_function(I2C_SLAVE_SCL_PIN, GPIO_FUNC_I2C);
gpio_pull_up(I2C_SLAVE_SCL_PIN);
i2c_slave_init(i2c1, I2C_SLAVE_ADDRESS, &i2c_slave_handler);
}
void main(void)
{
int ledpower = 500;
uint8_t tampon[10];
uint8_t temp, status;
VL53L8CX_ResultsData Results;
bool fin_match = false;
stdio_init_all();
stdio_set_translate_crlf(&stdio_usb, false);
Temps_init();
//tension_batterie_init();
spi_init(spi0, 2000000);
ws2812_init();
uint32_t temps_ms = Temps_get_temps_ms();
uint32_t temps_depart_ms;
float vitesse_mm_s=100;
gpio_init(LED1PIN);
gpio_set_dir(LED1PIN, GPIO_OUT );
gpio_put(LED1PIN, 1);
// Initialisation de la liaison SPI0
gpio_set_function(2, GPIO_FUNC_SPI);
gpio_set_function(3, GPIO_FUNC_SPI);
gpio_set_function(4, GPIO_FUNC_SPI);
// Initialisation de la liaison SPI1
gpio_set_function(26, GPIO_FUNC_SPI);
gpio_set_function(27, GPIO_FUNC_SPI);
gpio_set_function(28, GPIO_FUNC_SPI);
gpio_set_function(16, GPIO_FUNC_NULL);
gpio_set_function(17, GPIO_FUNC_NULL);
gpio_set_function(18, GPIO_FUNC_NULL);
gpio_set_function(19, GPIO_FUNC_NULL);
gpio_init(1); // CS
gpio_set_dir(1, GPIO_OUT );
gpio_put(1, 1);
gpio_init(29); // CS
gpio_set_dir(29, GPIO_OUT );
gpio_put(29, 1);
gauche.platform.address = 1;
droit.platform.address = 29;
spi_set_format(spi0, 8, SPI_CPOL_1, SPI_CPHA_1, SPI_MSB_FIRST);
spi_init(spi0, 2000000);
spi_set_format(spi1, 8, SPI_CPOL_1, SPI_CPHA_1, SPI_MSB_FIRST);
spi_init(spi1, 2000000);
tampon[0] = 0x55;
tampon[1] = 0x55;
i2c_setup_slave();
sleep_ms(5000);
printf("Demarrage...\n");
//multicore_launch_core1(gestion_affichage);
gestion_VL53L8CX();
}
uint8_t capteur_init(VL53L8CX_Configuration * capteur){
uint8_t status=0;
printf("debut init\n");
//pinMode(capteur->platform.address, OUTPUT);
status = vl53l8cx_init(capteur);
if(status != 0){
while(1){
printf("Status init = %d\n", status);
WaitMs(&(capteur->platform), 1000);
break;
}
}
sleep_ms(100);
status = vl53l8cx_set_resolution(capteur, VL53L8CX_RESOLUTION_8X8);
if(status !=0){
while(1){
printf("vl53l8cx_set_resolution failed :%d\n", status);
WaitMs(&(capteur->platform), 1000);
break;
}
}
status = vl53l8cx_set_ranging_frequency_hz(capteur, 15);
if(status !=0){
while(1){
printf("vl53l8cx_set_ranging_frequency_hz (15hz) failed :%d\n", status);
WaitMs(&(capteur->platform), 1000);
break;
}
}
//vl53l8cx_set_target_order(&Dev, VL53L8CX_TARGET_ORDER_CLOSEST);
vl53l8cx_set_target_order(capteur, VL53L8CX_TARGET_ORDER_STRONGEST);
status = vl53l8cx_start_ranging(capteur);
printf("Capteur : %d, fin init: %d\n", capteur->platform.address, status);
return status;
}
void capteurs_affiche_donnees(VL53L8CX_ResultsData * results_gauche, VL53L8CX_ResultsData * results_droit){
uint8_t row, col;
for(col=0; col<8; col++){
for(row=0; row<8; row++){
printf("%4d ", results_gauche->distance_mm[col*8 + row]);
}
printf(" - ");
for(row=0; row<8; row++){
printf("%4d ", results_droit->distance_mm[col*8 + row]);
}
printf("\n");
}
printf("\n");
}
/// @brief Obtient la distance de l'obstacle le plus proche.
/// @param
float gauche_planche_pos_x, gauche_planche_pos_y, gauche_planche_angle;
float droit_planche_pos_x, droit_planche_pos_y, droit_planche_angle;
float planche_centre_x, planche_centre_y, planche_angle_rad;
float taille_planche;
int echec;
void gestion_VL53L8CX(void){
VL53L8CX_ResultsData results_gauche, results_droit;
int echec_gauche, echec_droit;
float distance_obstacle;
capteur_init(&gauche);
capteur_init(&droit);
sleep_ms(100);
capteur_actualise( &gauche, &results_gauche); // une première lecture
capteur_actualise( &droit, &results_droit); // une première lecture
uint8_t status, isReady;
while(1){
isReady = 0;
isReady |= capteur_actualise( &gauche, &results_gauche);
isReady |= capteur_actualise( &droit, &results_droit);
if(isReady){
capteurs_affiche_donnees(&results_gauche, &results_droit);
//VL53L8_lecture( &gauche, &Results);
echec = 0;
echec_gauche = VL53L8_pos_planche_gauche(results_gauche, &gauche_planche_pos_x, &gauche_planche_pos_y, &gauche_planche_angle);
echec_droit = VL53L8_pos_planche_droit(results_droit, &droit_planche_pos_x, &droit_planche_pos_y, &droit_planche_angle);
printf("g:%d,d:%d\n", echec_gauche, echec_droit );
droit_planche_pos_x = -droit_planche_pos_x + OFFSET_CAPTEUR_DROIT_X_MM;
gauche_planche_pos_x = -gauche_planche_pos_x + OFFSET_CAPTEUR_GAUCHE_X_MM;
echec = (echec_gauche > 0) + (echec_droit > 0);
if(echec == 2){
if(echec_gauche == 2 && echec_droit == 3){
ws2812_set(0, 0, 0xF);
context.mem[0] = 3;
}else if(echec_gauche == 3 && echec_droit == 2){
ws2812_set(0, 0, 0xF);
context.mem[0] = 4;
}else{
// Aucun capteur valide
ws2812_set(0x0F,0,0);
context.mem[0] = 0;
}
}else if(echec == 1){
// Un seul capteur valide
if(echec_gauche == 0 && ! isnan(gauche_planche_angle)){
// capteur gauche permet de déterminer la position de la planche
ws2812_set(0x0F,0x8,0);
planche_centre_x = gauche_planche_pos_x + 200 * cos(gauche_planche_angle);
planche_centre_y = gauche_planche_pos_y + 200 * sin(gauche_planche_angle);
planche_angle_rad = gauche_planche_angle;
i2c_envoi_32bits(planche_centre_x, 1);
i2c_envoi_32bits(planche_centre_y, 5);
i2c_envoi_32bits((int)(planche_angle_rad * 1000), 9);
context.mem[0] = 1;
}else if(echec_droit == 0 && ! isnan(droit_planche_angle)){
// capteur droit permet de déterminer la position de la planche
ws2812_set(0x0F,0x8,0);
planche_centre_x = droit_planche_pos_x - 200 * cos(droit_planche_angle);
planche_centre_y = droit_planche_pos_y - 200 * sin(droit_planche_angle);
planche_angle_rad = droit_planche_angle;
i2c_envoi_32bits(planche_centre_x, 1);
i2c_envoi_32bits(planche_centre_y, 5);
i2c_envoi_32bits((int)(planche_angle_rad * 1000), 9);
context.mem[0] = 1;
}else{
// On a un bout de la planche mais pas d'angle, c'est un echec
echec = 2;
ws2812_set(0x0F,0,0);
context.mem[0] = 0;
}
}else{
// 2 capteurs valides
ws2812_set(0,0x0F,0);
planche_centre_x = (droit_planche_pos_x + gauche_planche_pos_x)/2;
planche_centre_y = (droit_planche_pos_y + gauche_planche_pos_y)/2;
planche_angle_rad = atan2f(droit_planche_pos_y - gauche_planche_pos_y, droit_planche_pos_x - gauche_planche_pos_x);
i2c_envoi_32bits(planche_centre_x, 1);
i2c_envoi_32bits(planche_centre_y, 5);
i2c_envoi_32bits((int)(planche_angle_rad * 1000), 9);
context.mem[0] = 2;
}
}
affichage();
printf("\n");
sleep_ms(150);
}
}
extern float delta_x_mm, delta_y_mm, delta_orientation_radian;
void gestion_affichage(void){
while(1){
affichage();
}
}
void affichage(void){
printf(">planche_g_pos_x:%f\n",gauche_planche_pos_x);
printf(">planche_g_pos_y:%f\n",gauche_planche_pos_y);
printf(">planche_d_pos_x:%f\n",droit_planche_pos_x);
printf(">planche_d_pos_y:%f\n",droit_planche_pos_y);
printf(">planche_centre_x:%f\n",planche_centre_x);
printf(">planche_centre_y:%f\n",planche_centre_y);
printf(">planche_angle:%f\n",planche_angle_rad / M_PI * 180);
printf(">gauche_planche_angle:%f\n",gauche_planche_angle / M_PI * 180);
printf(">droit_planche_angle:%f\n",droit_planche_angle / M_PI * 180);
printf(">echec:%d\n", echec);
}