Acquisition avec le gyroscope + début code servomoteur (commande fonctionnelle mais interface à refaire)

This commit is contained in:
Samuel 2022-10-15 21:13:52 +02:00
parent 8831c3d8a9
commit bab11c7b45
20 changed files with 148342 additions and 47 deletions

View File

@ -9,11 +9,12 @@ test.c
spi_nb.c spi_nb.c
gyro.c gyro.c
Temps.c Temps.c
Servomoteur.c
) )
pico_enable_stdio_usb(test 1) pico_enable_stdio_usb(test 1)
pico_enable_stdio_uart(test 1) pico_enable_stdio_uart(test 1)
pico_add_extra_outputs(test) pico_add_extra_outputs(test)
target_link_libraries(test pico_stdlib hardware_spi hardware_structs) target_link_libraries(test pico_stdlib hardware_spi hardware_pwm hardware_structs)
add_custom_target(Flash add_custom_target(Flash
DEPENDS test DEPENDS test

20
Servomoteur.c Normal file
View File

@ -0,0 +1,20 @@
#include "pico/stdlib.h"
#include "hardware/pwm.h"
#include "Servomoteur.h"
#define SERVO1 0
void Servomoteur_Init(void){
gpio_set_function(SERVO1, GPIO_FUNC_PWM);
uint slice_num = pwm_gpio_to_slice_num(SERVO1);
pwm_config pwm_servo = pwm_get_default_config();
pwm_config_set_clkdiv_int(&pwm_servo, 254);
pwm_config_set_phase_correct(&pwm_servo, false);
pwm_config_set_wrap(&pwm_servo, 9842);
pwm_init(slice_num, &pwm_servo, true);
pwm_set_chan_level(slice_num, 0, 984 );
}

1
Servomoteur.h Normal file
View File

@ -0,0 +1 @@
void Servomoteur_Init(void);

1001
acq_5ms_env_50ms.csv Normal file

File diff suppressed because it is too large Load Diff

5167
acq_5ms_env_50ms_enr_01.csv Normal file

File diff suppressed because it is too large Load Diff

141933
acq_5ms_env_50ms_enr_02.csv Normal file

File diff suppressed because it is too large Load Diff

15
graph.gp Normal file
View File

@ -0,0 +1,15 @@
set title "Observation des 3 axes\nT_{acq} : 5 ms"
set xlabel "Temps (s)"
set ylabel "Vitesse (°/s)"
plot "./acq_5ms_env_50ms.csv" using 2:5 w l title "Vitesse X"
pause -1
plot "./acq_5ms_env_50ms.csv" using 2:6 w l title "Vitesse Y"
pause -1
plot "./acq_5ms_env_50ms.csv" using 2:7 w l title "Vitesse Z"
pause -1

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.3 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.4 KiB

15
graph_enr01.gp Normal file
View File

@ -0,0 +1,15 @@
set title "Observation des 3 axes\nT_{acq} : 5 ms"
set xlabel "Temps (s)"
set ylabel "Vitesse (°/s)"
plot "./acq_5ms_env_50ms_enr_01.csv" using 1:2 w l title "Vitesse X"
pause -1
plot "./acq_5ms_env_50ms_enr_01.csv" using 1:3 w l title "Vitesse Y"
pause -1
plot "./acq_5ms_env_50ms_enr_01.csv" using 1:4 w l title "Vitesse Z"
pause -1

10
graph_enr02.gp Normal file
View File

@ -0,0 +1,10 @@
set title "Observation des 3 axes\nT_{acq} : 5 ms"
set xlabel "Temps (s)"
set ylabel "Vitesse (°/s)"
set grid ytics
set term png size 1200,600
plot "./acq_5ms_env_50ms_enr_02.csv" using 1:2 w l title "Vitesse X"

95
gyro.c
View File

@ -7,10 +7,8 @@
#include "Temps.h" #include "Temps.h"
#include "gyro.h" #include "gyro.h"
const uint PIN_CS = 1;
struct t_angle_gyro{ struct t_angle_gyro{
int32_t rot_x, rot_y, rot_z; int32_t rot_x, rot_y, rot_z, temp;
}; };
/// @brief structure d'échange des angles du gyrocope /// @brief structure d'échange des angles du gyrocope
@ -26,13 +24,15 @@ uint32_t rot_x_zero, rot_y_zero, rot_z_zero;
struct t_angle_gyro_double angle_gyro; struct t_angle_gyro_double angle_gyro, vitesse_gyro;
struct t_angle_gyro_double gyro_get_angle(void){ struct t_angle_gyro_double gyro_get_angle(void){
return angle_gyro; return angle_gyro;
} }
struct t_angle_gyro_double gyro_get_vitesse(void){
return vitesse_gyro;
}
void Gyro_Init(void){ void Gyro_Init(void){
// //
@ -45,9 +45,14 @@ void Gyro_Init(void){
gpio_set_dir(PIN_CS, GPIO_OUT); gpio_set_dir(PIN_CS, GPIO_OUT);
cs_deselect(); cs_deselect();
vitesse_calibration.rot_x = 0;
vitesse_calibration.rot_y = 0;
vitesse_calibration.rot_z = 0;
vitesse_calibration.temp = 0;
//spi_init(spi0, 100 * 1000); // SPI init @ 100 kHz //spi_init(spi0, 100 * 1000); // SPI init @ 100 kHz
uint speed = spi_init(spi0, 2 * 1000 * 1000); // SPI init @ 2 MHz uint speed = spi_init(spi0, 2 * 1000 * 1000); // SPI init @ 2 MHz
printf("vitesse SPI : %d ", speed); printf("vitesse SPI : %d\n", speed);
//Ça doit être les valeurs par défaut, mais ça marche ! //Ça doit être les valeurs par défaut, mais ça marche !
spi_set_format(spi0, 8, SPI_CPHA_1, SPI_CPOL_1, SPI_MSB_FIRST); spi_set_format(spi0, 8, SPI_CPHA_1, SPI_CPOL_1, SPI_MSB_FIRST);
@ -59,7 +64,10 @@ void Gyro_Init(void){
puts("Gyroscope trouve"); puts("Gyroscope trouve");
gyro_config(); gyro_config();
} }
sleep_ms(150); // Temps d'init du gyroscope
/*while(1){
gyro_calibration(); gyro_calibration();
}*/
} }
int gyro_init_check(){ int gyro_init_check(){
@ -86,22 +94,27 @@ void gyro_config(){
uint16_t tampon[2] = {0x20, config}; uint16_t tampon[2] = {0x20, config};
uint8_t tampon2[10]="\0\0\0\0\0\0\0\0\0"; uint8_t tampon2[10]="\0\0\0\0\0\0\0\0\0";
int statu, nb_read; int statu, nb_read;
while(spi_nb_busy(spi0) == SPI_BUSY);
//while(spi_nb_busy(spi0) == SPI_BUSY);
cs_select(); cs_select();
int rep = spi_nb_write_data(spi0, tampon, 2); int rep = spi_nb_write_data(spi0, tampon, 2);
if(rep == SPI_ERR_TRANSMIT_FIFO_FULL){ if(rep == SPI_ERR_TRANSMIT_FIFO_FULL){
printf("Erreur: spi_read_register: SPI_ERR_TRANSMIT_FIFO_FULL\n"); printf("Erreur: spi_read_register: SPI_ERR_TRANSMIT_FIFO_FULL\n");
//return statu; //return statu;
} }
while(spi_nb_busy(spi0) == SPI_BUSY); while(spi_nb_busy(spi0));
cs_deselect(); cs_deselect();
spi_read_register(spi0, 0x20, tampon2, 1); int nb_lu = spi_read_register(spi0, 0x20, tampon2, 1);
printf("Nb lu: %d\n", nb_lu);
if(tampon2[1] == config){ if(tampon2[1] == config){
puts("gyro_config ok !"); puts("gyro_config ok !");
}else{ }else{
puts("gyro_config FAILED !"); printf("gyro_config FAILED ! :%#4x\n", tampon2[1]);
} }
// Registre // Registre
@ -138,9 +151,13 @@ void Gyro_Read(uint16_t step_ms){
//gyro_get_angles(&vitesse_angulaire, NULL); //gyro_get_angles(&vitesse_angulaire, NULL);
// Angle en degré // Angle en degré
angle_gyro.rot_x = angle_gyro.rot_x + (double)vitesse_angulaire.rot_x * step_ms * 0.001 * 0.00875 * 0.125; vitesse_gyro.rot_x = (double)vitesse_angulaire.rot_x * 0.00875 / 32.0;
angle_gyro.rot_y = angle_gyro.rot_y + (double)vitesse_angulaire.rot_y * step_ms * 0.001 * 0.00875 * 0.125; vitesse_gyro.rot_y = (double)vitesse_angulaire.rot_y * 0.00875 / 32.0;
angle_gyro.rot_z = angle_gyro.rot_z + (double)vitesse_angulaire.rot_z * step_ms * 0.001 * 0.00875 * 0.125; vitesse_gyro.rot_z = (double)vitesse_angulaire.rot_z * 0.00875 / 32.0;
angle_gyro.rot_x = angle_gyro.rot_x + vitesse_gyro.rot_x * step_ms * 0.001;
angle_gyro.rot_y = angle_gyro.rot_y + vitesse_gyro.rot_y * step_ms * 0.001;
angle_gyro.rot_z = angle_gyro.rot_z + vitesse_gyro.rot_z * step_ms * 0.001;
//printf("%d, %#4x, %#4x, %#4x\n", step_ms, vitesse_angulaire.rot_x, vitesse_angulaire.rot_y, vitesse_angulaire.rot_z); //printf("%d, %#4x, %#4x, %#4x\n", step_ms, vitesse_angulaire.rot_x, vitesse_angulaire.rot_y, vitesse_angulaire.rot_z);
@ -151,6 +168,15 @@ void Gyro_Read(uint16_t step_ms){
//printf("tampon : %s\n", tampon); //printf("tampon : %s\n", tampon);
} }
int16_t gyro_get_temp(void){
int8_t tampon[3]="\0\0";
int16_t temperature;
spi_read_register(spi0, 0x26, tampon, 6);
temperature = -tampon[1];
printf("temperature %d\n",temperature);
}
void gyro_get_angles(struct t_angle_gyro* angle_gyro, struct t_angle_gyro* angle_gyro_moy){ void gyro_get_angles(struct t_angle_gyro* angle_gyro, struct t_angle_gyro* angle_gyro_moy){
uint8_t tampon[10]="\0\0\0\0\0\0\0\0\0"; uint8_t tampon[10]="\0\0\0\0\0\0\0\0\0";
int16_t rot_x, rot_y, rot_z; int16_t rot_x, rot_y, rot_z;
@ -161,32 +187,31 @@ void gyro_get_angles(struct t_angle_gyro* angle_gyro, struct t_angle_gyro* angle
rot_z = -(tampon[5] + (tampon[6] << 8)); rot_z = -(tampon[5] + (tampon[6] << 8));
if(angle_gyro_moy == NULL){ if(angle_gyro_moy == NULL){
angle_gyro->rot_x = (int32_t) rot_x * 8; angle_gyro->rot_x = (int32_t) rot_x * 32;
angle_gyro->rot_y = (int32_t) rot_y * 8; angle_gyro->rot_y = (int32_t) rot_y * 32;
angle_gyro->rot_z = (int32_t) rot_z * 8; angle_gyro->rot_z = (int32_t) rot_z * 32;
}else{ }else{
angle_gyro->rot_x = (int32_t) rot_x * 8 - angle_gyro_moy->rot_x; angle_gyro->rot_x = (int32_t) rot_x * 32 - angle_gyro_moy->rot_x;
angle_gyro->rot_y = (int32_t) rot_y * 8 - angle_gyro_moy->rot_y; angle_gyro->rot_y = (int32_t) rot_y * 32 - angle_gyro_moy->rot_y;
angle_gyro->rot_z = (int32_t) rot_z * 8 - angle_gyro_moy->rot_z; angle_gyro->rot_z = (int32_t) rot_z * 32 - angle_gyro_moy->rot_z;
}
} }
}
void gyro_affiche(struct t_angle_gyro_double angle_gyro, char * titre){ void gyro_affiche(struct t_angle_gyro_double angle_gyro, char * titre){
if(titre != NULL){ if(titre != NULL){
printf("%s ",titre); printf("%s ",titre);
} }
printf("rx : %f, ry : %f, rz: %f\n", angle_gyro.rot_x, printf("angle, %f, %f, %f\n", angle_gyro.rot_x, angle_gyro.rot_y, angle_gyro.rot_z);
angle_gyro.rot_y, angle_gyro.rot_z);
} }
void gyro_calibration(void){ void gyro_calibration(void){
uint32_t nb_ech = 100; uint32_t t_calibration_ms = 40000;
uint32_t nb_ech = t_calibration_ms/5;
uint32_t m_temps_ms = Temps_get_temps_ms(); uint32_t m_temps_ms = Temps_get_temps_ms();
uint32_t temps_500ms = m_temps_ms;
int16_t temperature;
printf("Calibration...\n"); printf("Calibration...\n");
@ -194,7 +219,7 @@ void gyro_calibration(void){
vitesse_calibration.rot_y = 0; vitesse_calibration.rot_y = 0;
vitesse_calibration.rot_z = 0; vitesse_calibration.rot_z = 0;
// Acquisition des échantillons, 1 par milliseconde // Acquisition des échantillons, 1 par milliseconde (1 ms, c'est trop court on dirait !)
for(uint32_t i=0; i<nb_ech; i++){ for(uint32_t i=0; i<nb_ech; i++){
while(m_temps_ms == Temps_get_temps_ms()); while(m_temps_ms == Temps_get_temps_ms());
m_temps_ms = Temps_get_temps_ms(); m_temps_ms = Temps_get_temps_ms();
@ -202,13 +227,19 @@ void gyro_calibration(void){
vitesse_calibration.rot_x += vitesse_angulaire.rot_x; vitesse_calibration.rot_x += vitesse_angulaire.rot_x;
vitesse_calibration.rot_y += vitesse_angulaire.rot_y; vitesse_calibration.rot_y += vitesse_angulaire.rot_y;
vitesse_calibration.rot_z += vitesse_angulaire.rot_z; vitesse_calibration.rot_z += vitesse_angulaire.rot_z;
if(m_temps_ms > temps_500ms){
printf(".");
gyro_get_temp();
temps_500ms += 500;
} }
vitesse_calibration.rot_x = vitesse_calibration.rot_x / nb_ech; sleep_ms(5);
vitesse_calibration.rot_y = vitesse_calibration.rot_y / nb_ech; }
vitesse_calibration.rot_z = vitesse_calibration.rot_z / nb_ech; vitesse_calibration.rot_x = vitesse_calibration.rot_x / (int32_t)nb_ech;
vitesse_calibration.rot_y = vitesse_calibration.rot_y / (int32_t)nb_ech;
vitesse_calibration.rot_z = vitesse_calibration.rot_z / (int32_t)nb_ech;
temperature = gyro_get_temp();
printf("fin calibration\n"); printf("fin calibration, %d, %d, %d, %d\n", vitesse_calibration.rot_x, vitesse_calibration.rot_y ,vitesse_calibration.rot_z, temperature);
} }

2
gyro.h
View File

@ -6,3 +6,5 @@ void Gyro_Init(void);
void Gyro_Read(u_int16_t); void Gyro_Read(u_int16_t);
void gyro_affiche(struct t_angle_gyro_double angle_gyro, char * titre); void gyro_affiche(struct t_angle_gyro_double angle_gyro, char * titre);
struct t_angle_gyro_double gyro_get_angle(void); struct t_angle_gyro_double gyro_get_angle(void);
struct t_angle_gyro_double gyro_get_vitesse(void);
int16_t gyro_get_temp(void);

View File

@ -14,7 +14,7 @@ uint16_t spi0_slave_register;
uint8_t* spi0_buffer; uint8_t* spi0_buffer;
uint8_t spi0_nb_data_to_read; uint8_t spi0_nb_data_to_read;
#define PIN_CS 1
void cs_select(void) { void cs_select(void) {
asm volatile("nop \n nop \n nop"); asm volatile("nop \n nop \n nop");
@ -158,7 +158,7 @@ uint8_t spi_nb_read_data_8bits(spi_inst_t * spi, uint8_t * buffer){
/// @param size size of the data to transmit /// @param size size of the data to transmit
/// @return SPI_OK or SPI_ERR_TRANSMIT_FIFO_FULL /// @return SPI_OK or SPI_ERR_TRANSMIT_FIFO_FULL
inline int spi_nb_write_data(spi_inst_t * spi, uint16_t * buffer, uint8_t size){ inline int spi_nb_write_data(spi_inst_t * spi, uint16_t * buffer, uint8_t size){
int status_spi = SPI_OK; int status_spi;
uint8_t index=0; uint8_t index=0;
do do
{ {
@ -168,7 +168,7 @@ inline int spi_nb_write_data(spi_inst_t * spi, uint16_t * buffer, uint8_t size){
}else{ }else{
status_spi = SPI_ERR_TRANSMIT_FIFO_FULL; status_spi = SPI_ERR_TRANSMIT_FIFO_FULL;
} }
while (spi_nb_busy(spi)); //while (spi_nb_busy(spi));// <== ça, c'est bizarre !
//statu_spi = spi_nb_write_byte(spi, buffer[index]); //statu_spi = spi_nb_write_byte(spi, buffer[index]);
//printf("envoi : %x\n", buffer[index]); //printf("envoi : %x\n", buffer[index]);
//sleep_ms(1); //sleep_ms(1);
@ -209,5 +209,65 @@ int spi_read_register(spi_inst_t * spi, uint16_t spi_slave_register, uint8_t *bu
if(nb_read != nb_to_read+1){ if(nb_read != nb_to_read+1){
printf("Erreur: spi_read_register, nb de valeurs lues incoherentes"); printf("Erreur: spi_read_register, nb de valeurs lues incoherentes");
} }
return nb_read;
}
void spi_test(){
// Gyro_Init
uint16_t tampon_ecriture[] = {'a','b','c','d','e','f','g','h','i','j',0};
uint8_t tampon_lecture[10] = {0,0,0,0,0,0,0,0,0,0};
uint8_t nb_lu, statu;
uint8_t config = 0b11101111;
uint16_t config_gyro[2] = {0x20, config};
gpio_set_function(16, GPIO_FUNC_SPI); // SDI
gpio_set_function(18, GPIO_FUNC_SPI); // SCK
gpio_set_function(19, GPIO_FUNC_SPI); // SDO
gpio_set_function(PIN_CS, GPIO_OUT); // CSn
gpio_init(PIN_CS);
gpio_set_dir(PIN_CS, GPIO_OUT);
cs_deselect();
//spi_init(spi0, 100 * 1000); // SPI init @ 100 kHz
uint speed = spi_init(spi0, 2 * 1000 * 1000); // SPI init @ 2 MHz
printf("vitesse SPI : %d\n", speed);
//Ça doit être les valeurs par défaut, mais ça marche !
spi_set_format(spi0, 8, SPI_CPHA_1, SPI_CPOL_1, SPI_MSB_FIRST);
// Gyro_Init
// gyro_config
cs_select();
statu = spi_nb_write_data(spi0, config_gyro, 2);
if(statu == SPI_ERR_TRANSMIT_FIFO_FULL){
printf("Erreur: spi_read_register: SPI_ERR_TRANSMIT_FIFO_FULL\n");
}
while(spi_nb_busy(spi0));
cs_deselect();
nb_lu = spi_read_register(spi0, 0x20, tampon_lecture, 1);
printf("Nb lu: %d\n", nb_lu);
//puts(tampon_lecture);
if(tampon_lecture[1] == config){
puts("gyro_config ok !");
}else{
puts("gyro_config FAILED !");
printf("gyro_config FAILED ! :%#4x\n", tampon_lecture[1]);
}
} }

View File

@ -7,9 +7,11 @@
#define SPI_IN_PROGRESS 1 #define SPI_IN_PROGRESS 1
#define SPI_FAILED 2 #define SPI_FAILED 2
#define SPI_ERR_TRANSMIT_FIFO_FULL 1 #define SPI_ERR_TRANSMIT_FIFO_FULL -1
#define SPI_OK 0 #define SPI_OK 0
#define PIN_CS 1
int spi_nb_busy(spi_inst_t * spi); int spi_nb_busy(spi_inst_t * spi);
void spi_nb_flush_recieve_fifo(spi_inst_t * spi); void spi_nb_flush_recieve_fifo(spi_inst_t * spi);
int spi_nb_write_byte(spi_inst_t * spi, uint16_t data); int spi_nb_write_byte(spi_inst_t * spi, uint16_t data);
@ -20,3 +22,4 @@ int spi_read_register(spi_inst_t * spi, uint16_t spi_slave_register, uint8_t *bu
void cs_select(void); void cs_select(void);
void cs_deselect(void); void cs_deselect(void);
void spi_test();

46
test.c
View File

@ -5,14 +5,20 @@
#include "gyro.h" #include "gyro.h"
#include "Temps.h" #include "Temps.h"
#include "spi_nb.h"
#include "Servomoteur.h"
const uint LED_PIN = 25; const uint LED_PIN = 25;
#define V_INIT -999.0
int main() { int main() {
bi_decl(bi_program_description("This is a test binary.")); bi_decl(bi_program_description("This is a test binary."));
bi_decl(bi_1pin_with_name(LED_PIN, "On-board LED")); bi_decl(bi_1pin_with_name(LED_PIN, "On-board LED"));
double vitesse_filtre_x=V_INIT, vitesse_filtre_y=V_INIT, vitesse_filtre_z=V_INIT;
struct t_angle_gyro_double angle_gyro;
uint32_t temps_ms = 0; uint32_t temps_ms = 0, temps_ms_old;
stdio_init_all(); stdio_init_all();
@ -21,24 +27,54 @@ int main() {
gpio_put(LED_PIN, 1); gpio_put(LED_PIN, 1);
sleep_ms(3000); sleep_ms(3000);
Servomoteur_Init();
//puts("Debut");
//spi_test();
//while(1);
Temps_init(); Temps_init();
Gyro_Init(); Gyro_Init();
temps_ms = Temps_get_temps_ms(); temps_ms = Temps_get_temps_ms();
temps_ms_old = temps_ms;
while (1) { while (1) {
u_int16_t step_ms = 5; u_int16_t step_ms = 5;
float coef_filtre = 0.001;
while(temps_ms_old == Temps_get_temps_ms());
temps_ms_old = Temps_get_temps_ms();
// Tous les pas de step_ms // Tous les pas de step_ms
if(temps_ms == Temps_get_temps_ms()){ if(Temps_get_temps_ms() % step_ms){
temps_ms += step_ms;
Gyro_Read(step_ms); Gyro_Read(step_ms);
//gyro_affiche(gyro_get_vitesse(), "Angle :");
// Filtre
angle_gyro = gyro_get_vitesse();
if(vitesse_filtre_x == V_INIT){
vitesse_filtre_x = angle_gyro.rot_x;
vitesse_filtre_y = angle_gyro.rot_y;
vitesse_filtre_z = angle_gyro.rot_z;
}else{
vitesse_filtre_x = vitesse_filtre_x * (1-coef_filtre) + angle_gyro.rot_x * coef_filtre;
vitesse_filtre_y = vitesse_filtre_y * (1-coef_filtre) + angle_gyro.rot_y * coef_filtre;
vitesse_filtre_z = vitesse_filtre_z * (1-coef_filtre) + angle_gyro.rot_z * coef_filtre;
}
printf("%f, %f, %f, %f\n", (double)temps_ms_old / 1000, vitesse_filtre_x, vitesse_filtre_y, vitesse_filtre_z);
//gyro_affiche(angle_gyro, "Vitesse (°/s),");
}
// Toutes les 50 ms
if((Temps_get_temps_ms() % 50) == 0){
} }
// Toutes les 500 ms // Toutes les 500 ms
if((Temps_get_temps_ms() % 500) == 0){ if((Temps_get_temps_ms() % 500) == 0){
gyro_affiche(gyro_get_angle(), "Angle :"); //gyro_affiche(gyro_get_angle(), "Angle :");
}
// Toutes les secondes
if((Temps_get_temps_ms() % 500) == 0){
//gyro_get_temp();
} }
} }
} }