Holonome_2024/Test.c

506 lines
13 KiB
C

#include <stdio.h>
#include "pico/multicore.h"
#include "pico/stdlib.h"
#include "pico/stdio.h"
#include "hardware/gpio.h"
#include "hardware/i2c.h"
#include "pico/binary_info.h"
#include "math.h"
#include "Test.h"
#include "APDS_9960.h"
#include "gyro.h"
#include "Asser_Moteurs.h"
#include "Asser_Position.h"
#include "Balise_VL53L1X.h"
#include "Commande_vitesse.h"
#include "Demonstration.h"
#include "Geometrie_robot.h"
#include "i2c_annexe.h"
#include "i2c_maitre.h"
#include "Localisation.h"
#include "Log.h"
#include "Moteurs.h"
#include "Monitoring.h"
#include "QEI.h"
#include "Robot_config.h"
#include "Servomoteur.h"
#include "spi_nb.h"
#include "Temps.h"
#include "Trajectoire.h"
#include "Trajet.h"
#include "Test_gyro.h"
#include "Test_i2c.h"
#include "Test_log.h"
#include "Test_strategie.h"
#include "Test_strategie_2024.h"
#include "Tests_unitaires.h"
#include "Tests_deplacement.h"
#include "Test.h"
#define V_INIT -999.0
#define TEST_TIMEOUT_US 10000000
int test_APDS9960(void);
int test_asser_position_avance(void);
int test_asser_position_avance_et_tourne(int);
int test_transition_gyro_pas_gyro(void);
void affiche_localisation(void);
int test_capteurs_balise(void);
int test_geometrie(void);
int test_angle_balise(void);
// Mode test : renvoie 0 pour quitter le mode test
int mode_test(){
static int iteration = 2;
printf("Appuyez sur une touche pour entrer en mode test :\n");
printf("A - Tests unitaires...\n");
printf("B - Tests deplacement...\n");
printf("E - Strategie...\n");
printf("F - Strategie 2024...\n");
printf("G - Lecture des capteurs\n");
printf("H - Asser Position - avance\n");
printf("I - Asser Position - avance et tourne (gyro)\n");
printf("J - Asser Position - avance et tourne (sans gyro)\n");
printf("N - Fonctions geometrique\n");
printf("O - Analyse obstacle\n");
printf("Q - Asser Position - transition Gyro -> Pas gyro\n");
printf("R - Test des logs...\n");
printf("T - Trajectoire\n");
printf("U - Tests i2c...\n");
printf("V - APDS_9960\n");
printf("W - Endurance aller retour\n");
printf("Z - Codes de démonstration\n");
stdio_flush();
int rep = getchar_timeout_us(TEST_TIMEOUT_US);
stdio_flush();
switch (rep)
{
case 'a':
case 'A':
while(mode_test_unitaire());
break;
case 'b':
case 'B':
while(mode_test_deplacement());
break;
case 'E':
case 'e':
while(test_strategie());
break;
case 'F':
case 'f':
while(test_strategie_2024());
break;
case 'G':
case 'g':
while(test_capteurs_balise());
break;
case 'H':
case 'h':
while(test_asser_position_avance());
break;
case 'I':
case 'i':
while(test_asser_position_avance_et_tourne(1));
break;
case 'J':
case 'j':
while(test_asser_position_avance_et_tourne(0));
break;
case 'N':
case 'n':
while(test_geometrie());
break;
case 'O':
case 'o':
while(test_angle_balise());
break;
case 'Q':
case 'q':
while(test_transition_gyro_pas_gyro());
break;
case 'R':
case 'r':
while(test_log());
break;
case 'U':
case 'u':
while(test_i2c());
break;
case 'V':
case 'v':
while(test_APDS9960());
break;
case 'Z':
case 'z':
while(Demonstration_menu());
break;
case PICO_ERROR_TIMEOUT:
iteration--;
if(iteration == 0){
//printf("Sortie du mode test\n");
//return 0;
}
default:
printf("Commande inconnue\n");
break;
}
return 1;
}
int test_continue_test(){
int lettre;
//printf("q pour quitter, une autre touche pour un nouveau test.\n");
do{
lettre = getchar_timeout_us(0);
}while(lettre == PICO_ERROR_TIMEOUT || lettre == 0);
switch(lettre){
case 'q':
case 'Q':
return 0;
default:
return 1;
}
}
int test_capteurs_balise(void){
printf("Test de la balise\n");
i2c_maitre_init();
Localisation_set(0,0,0);
Balise_VL53L1X_init();
while(true){
uint8_t min_distance;
i2c_gestion(i2c0);
i2c_annexe_gestion();
Balise_VL53L1X_gestion();
min_distance = Balise_VL53L1X_get_min_distance();
printf(">min_distance:%d\n",min_distance);
for(uint8_t capteur=0; capteur<12; capteur++){
printf(">c%d:%d\n",capteur, Balise_VL53L1X_get_capteur_cm(capteur));
}
sleep_ms(20);
}
}
int test_APDS9960(){
int lettre;
printf("Initialisation\n");
APDS9960_Init();
printf("Lecture...\n");
/*
do{
APDS9960_Lire();
lettre = getchar_timeout_us(0);
stdio_flush();
}while(lettre == PICO_ERROR_TIMEOUT);*/
while(1){
APDS9960_Lire();
sleep_ms(100);
}
return 1;
}
/// @brief Avance droit 100 mm/s en tournant sur lui-même (1rad/s)
/// @param m_gyro : 1 pour utiliser le gyroscope, 0 sans
/// @param propulseur : 1 pour activer le propulseur toutes les secondes
/// @return
int test_transition_gyro_pas_gyro(void){
int lettre, _step_ms = 1, _step_ms_gyro = 2, step_gyro=2, propulseur_on=0;
uint32_t temps_ms = 0, temps_ms_init = 0, temps_ms_old, tempo_prop=0;
struct position_t position_consigne;
position_consigne.angle_radian = 0;
position_consigne.x_mm = 0;
position_consigne.y_mm = 0;
printf("Le robot tourne sur lui-même, transition sans gyro @ t=5s\n");
printf("Init gyroscope\n");
Gyro_Init();
printf("C'est parti !\n");
stdio_flush();
set_position_avec_gyroscope(1);
temps_ms = Temps_get_temps_ms();
temps_ms_old = temps_ms;
temps_ms_init = temps_ms;
multicore_launch_core1(affiche_localisation);
do{
while(temps_ms == Temps_get_temps_ms());
temps_ms = Temps_get_temps_ms();
temps_ms_old = temps_ms;
QEI_update();
if(get_position_avec_gyroscope()){
if(temps_ms % _step_ms_gyro == 0){
Gyro_Read(_step_ms_gyro);
}
}
if(temps_ms - temps_ms_init > 5000){
set_position_avec_gyroscope(0);
}
Localisation_gestion();
AsserMoteur_Gestion(_step_ms);
position_consigne.angle_radian = (float) (temps_ms - temps_ms_init) /1000.;
Asser_Position(position_consigne);
lettre = getchar_timeout_us(0);
}while(lettre == PICO_ERROR_TIMEOUT || lettre == 0);
printf("lettre : %c, %d\n", lettre, lettre);
return 0;
}
/// @brief Avance droit 100 mm/s en tournant sur lui-même (1rad/s)
/// @param m_gyro : 1 pour utiliser le gyroscope, 0 sans
/// @param propulseur : 1 pour activer le propulseur toutes les secondes
/// @return
int test_asser_position_avance_et_tourne(int m_gyro){
int lettre, _step_ms = 1, _step_ms_gyro = 2, step_gyro=2, propulseur_on=0;
uint32_t temps_ms = 0, temps_ms_init = 0, temps_ms_old, tempo_prop=0;
struct position_t position_consigne;
position_consigne.angle_radian = 0;
position_consigne.x_mm = 0;
position_consigne.y_mm = 0;
printf("Le robot avance à 100 mm/s\n");
if(m_gyro){
printf("Init gyroscope\n");
Gyro_Init();
printf("C'est parti !\n");
}
stdio_flush();
set_position_avec_gyroscope(m_gyro);
temps_ms = Temps_get_temps_ms();
temps_ms_old = temps_ms;
temps_ms_init = temps_ms;
multicore_launch_core1(affiche_localisation);
do{
while(temps_ms == Temps_get_temps_ms()){
}
temps_ms = Temps_get_temps_ms();
temps_ms_old = temps_ms;
QEI_update();
if(temps_ms % _step_ms_gyro == 0){
Gyro_Read(_step_ms_gyro);
}
Localisation_gestion();
AsserMoteur_Gestion(_step_ms);
position_consigne.angle_radian = (float) (temps_ms - temps_ms_init) /1000.;
Asser_Position(position_consigne);
lettre = getchar_timeout_us(0);
}while(lettre == PICO_ERROR_TIMEOUT || lettre == 0);
printf("lettre : %c, %d\n", lettre, lettre);
return 0;
}
int test_asser_position_avance(){
int lettre, _step_ms = 1, temps_ms=0;
struct position_t position;
position.angle_radian = 0;
position.x_mm = 0;
position.y_mm = 0;
printf("Le robot avance à 100 mm/s\n");
do{
QEI_update();
Localisation_gestion();
AsserMoteur_Gestion(_step_ms);
if(temps_ms < 5000){
position.y_mm = (float) temps_ms * 100. / 1000.;
}else if(temps_ms < 10000){
position.y_mm = 1000 - (float) temps_ms * 100. / 1000.;
}else{
temps_ms = 0;
}
Asser_Position(position);
temps_ms += _step_ms;
sleep_ms(_step_ms);
lettre = getchar_timeout_us(0);
}while(lettre == PICO_ERROR_TIMEOUT);
return 0;
}
int test_geometrie(){
float angle = 270, angle_min, angle_max;
printf("Normalise %f° : %f°\n", angle, Geometrie_get_angle_normalisee(angle*DEGRE_EN_RADIAN)/DEGRE_EN_RADIAN);
angle = 180;
printf("Normalise %f° : %f°\n", angle, Geometrie_get_angle_normalisee(angle*DEGRE_EN_RADIAN)/DEGRE_EN_RADIAN);
angle = 181;
printf("Normalise %f° : %f°\n", angle, Geometrie_get_angle_normalisee(angle*DEGRE_EN_RADIAN)/DEGRE_EN_RADIAN);
angle = 179;
printf("Normalise %f° : %f°\n", angle, Geometrie_get_angle_normalisee(angle*DEGRE_EN_RADIAN)/DEGRE_EN_RADIAN);
angle_min = -100;
angle_max = -80;
angle = -90;
printf("Anglee %f° compris entre %f° et %f° : %d\n", angle, angle_min, angle_max,
Geometrie_compare_angle(angle*DEGRE_EN_RADIAN, angle_min*DEGRE_EN_RADIAN, angle_max*DEGRE_EN_RADIAN));
angle = 90;
printf("Anglee %f° compris entre %f° et %f° : %d\n", angle, angle_max, angle_min,
Geometrie_compare_angle(angle*DEGRE_EN_RADIAN, angle_min*DEGRE_EN_RADIAN, angle_max*DEGRE_EN_RADIAN));
angle = -120;
printf("Anglee %f° compris entre %f° et %f° : %d\n", angle, angle_max, angle_min,
Geometrie_compare_angle(angle*DEGRE_EN_RADIAN, angle_min*DEGRE_EN_RADIAN, angle_max*DEGRE_EN_RADIAN));
angle_min = 178;
angle_max = 182;
angle = 179;
printf("Anglee %f° compris entre %f° et %f° : %d\n", angle, angle_min, angle_max,
Geometrie_compare_angle(angle*DEGRE_EN_RADIAN, angle_min*DEGRE_EN_RADIAN, angle_max*DEGRE_EN_RADIAN));
angle = 177;
printf("Anglee %f° compris entre %f° et %f° : %d\n", angle, angle_max, angle_min,
Geometrie_compare_angle(angle*DEGRE_EN_RADIAN, angle_min*DEGRE_EN_RADIAN, angle_max*DEGRE_EN_RADIAN));
angle = 183;
printf("Anglee %f° compris entre %f° et %f° : %d\n", angle, angle_max, angle_min,
Geometrie_compare_angle(angle*DEGRE_EN_RADIAN, angle_min*DEGRE_EN_RADIAN, angle_max*DEGRE_EN_RADIAN));
return 0;
}
void affiche_monitoring(){
float distance;
while(1){
temps_cycle_display();
printf(">distance:%f\n",Trajet_get_obstacle_mm());
sleep_ms(100);
}
}
int test_angle_balise(void){
int lettre;
float distance, angle=3.1281;
enum {
TEST_BLEU,
ATTENTE1,
TEST_VERT,
ATTENTE2,
TEST_RESET,
ATTENTE3,
TEST_ANGLE
}etat_test_led=TEST_BLEU;
i2c_maitre_init();
Balise_VL53L1X_init();
Localisation_set(1000,1500,0);
multicore_launch_core1(affiche_monitoring);
uint temps_ms, timer_ms=1000;
temps_ms = Temps_get_temps_ms();
do{
temps_cycle_check();
i2c_gestion(i2c0);
i2c_annexe_gestion();
Balise_VL53L1X_gestion();
if(temps_ms != Temps_get_temps_ms()){
temps_ms = Temps_get_temps_ms();
switch(etat_test_led){
case TEST_BLEU:
i2c_annexe_couleur_balise(0b00011100, 0x0FFF);
timer_ms--;
if(timer_ms<2){
etat_test_led=TEST_VERT;
timer_ms=1000;
}
break;
case TEST_VERT:
i2c_annexe_couleur_balise(0b00000011, 0x0FFF);
timer_ms--;
if(timer_ms<2){
etat_test_led=TEST_RESET;
timer_ms=10000;
}
break;
case TEST_RESET:
i2c_annexe_couleur_balise(0, 0x00);
timer_ms--;
if(timer_ms<2){
etat_test_led=TEST_ANGLE;
timer_ms=0;
}
break;
case TEST_ANGLE:
timer_ms++;
angle=(float)timer_ms / 1000.;
Trajet_set_obstacle_mm(Balise_VL53L1X_get_distance_obstacle_mm(angle));
break;
}
}
lettre = getchar_timeout_us(0);
}while(lettre == PICO_ERROR_TIMEOUT || lettre == 0);
return 0;
}