Mode colonne lumineuse + nouveau code de démonstration

This commit is contained in:
Samuel 2025-03-09 21:33:00 +01:00
parent 2eb2ceff20
commit 7e24a79115
3 changed files with 299 additions and 5 deletions

View File

@ -2,16 +2,20 @@
#include "Demonstration.h"
#define TEST_TIMEOUT_US 10000000
#define CAPTEUR_POUR_ATTENTE 11
#define CAPTEUR_POUR_ATTENTE 6
int Demonstration_init(void);
enum etat_action_t Demonstration_calage();
enum etat_action_t Demonstration_rectangle(int avance_x_mm, int avance_y_mm);
enum etat_action_t Demonstration_avance_puis_tourne(int avance_x_mm, int avance_y_mm, float angle_degrees);
enum etat_action_t Demonstration_tourne(float angle_degrees);
enum etat_action_t Demonstration_bezier();
enum etat_action_t Demonstration_attente();
enum etat_action_t Demonstration_leve_bras(uint32_t bras);
enum etat_action_t Demonstration_baisse_bras(void);
enum etat_action_t Demonstration_attrape_plante();
void Demonstration_actionneurs(void);
uint32_t temps_ms_demo = 0, temps_ms_old;
@ -22,6 +26,7 @@ void demo_affiche_localisation(){
printf(">X:%f\n>Y:%f\n>angle:%f\n", position.x_mm, position.y_mm, position.angle_radian *180. / 3.141592654);
printf(">v_bat:%2.2f\n", i2c_annexe_get_tension_batterie() / 10.);
printf(">capteur:%d\n", Balise_VL53L1X_get_capteur_cm(CAPTEUR_POUR_ATTENTE));
sleep_ms(50);
}
}
@ -29,6 +34,7 @@ int Demonstration_menu(void){
static int iteration = 2;
int rep;
printf("Mode demo - init\n");
set_position_avec_gyroscope(false);
Demonstration_init();
while(1){
do{
@ -40,6 +46,8 @@ int Demonstration_menu(void){
/*printf("C - Trajets enchaines - manuels\n");
printf("D - Trajets enchaines - auto\n");
printf("E - Asservissement angulaire\n");*/
printf("F - Rotation et actionneurs\n");
printf("Z - Sem-automatique\n");
printf("Q - Quitter\n");
rep = getchar_timeout_us(TEST_TIMEOUT_US);
}while(rep == 0 || rep == PICO_ERROR_TIMEOUT);
@ -75,6 +83,13 @@ int Demonstration_menu(void){
printf("Fin attente\n");
break;
case 'F':
while(1){
printf("Demo actionneur\n");
Demonstration_actionneurs();
}
break;
case 'q':
case 'Q':
return 0;
@ -82,6 +97,7 @@ int Demonstration_menu(void){
case 'z':
case 'Z':
printf("Demo semi-auto\n");
Demonstration_semiauto();
break;
@ -135,6 +151,112 @@ void Demonstration_auto(){
}
}
void Demonstration_actionneurs(){
Demonstration_attente();
Demonstration_attrape_plante();
Demonstration_tourne(30);
Demonstration_leve_bras(0);
Demonstration_tourne(-60);
Demonstration_leve_bras(5);
Demonstration_tourne(120);
Demonstration_leve_bras(1);
Demonstration_tourne(-180);
Demonstration_leve_bras(4);
Demonstration_tourne(240);
Demonstration_leve_bras(2);
Demonstration_tourne(-300);
Demonstration_leve_bras(3);
Demonstration_tourne(150);
Demonstration_baisse_bras();
}
void Balise_cli_orange_maintenance(){
static int32_t temps_ms_led_cli, timer_led_ms = 0;
static enum etat_led_cli_orange_maintenance_t{
CLI_ON_1,
CLI_OFF_1,
CLI_ON_2,
CLI_OFF_2,
}etat_led_cli_orange_maintenance=CLI_ON_1;
// Toutes les 1 ms.
if(temps_ms_led_cli != Temps_get_temps_ms()){
temps_ms_led_cli = Temps_get_temps_ms();
timer_led_ms--;
switch(etat_led_cli_orange_maintenance){
case CLI_ON_1:
if(timer_led_ms<= 0){
i2c_annexe_couleur_balise(0, 0xFFFF);
timer_led_ms = 100;
etat_led_cli_orange_maintenance=CLI_OFF_1;
}
break;
case CLI_OFF_1:
if(timer_led_ms<= 0){
i2c_annexe_couleur_balise(0b11101000, 0xFFFF);
timer_led_ms = 100;
etat_led_cli_orange_maintenance=CLI_ON_2;
}
break;
case CLI_ON_2:
if(timer_led_ms<= 0){
i2c_annexe_couleur_balise(0, 0xFFFF);
timer_led_ms = 800;
etat_led_cli_orange_maintenance=CLI_OFF_2;
}
break;
case CLI_OFF_2:
if(timer_led_ms<= 0){
i2c_annexe_couleur_balise(0b11101000, 0xFFFF);
timer_led_ms = 100;
etat_led_cli_orange_maintenance=CLI_ON_1;
}
break;
}
}
}
void Balise_pulse_vert(){
static int32_t temps_ms_led_cli, timer_led_ms = 800;
int32_t timer_led_max_ms =800;
int32_t vert_led, vert_led_max = 0b111;
static enum etat_led_pulse_vert_t{
PULSE_RISE,
PULSE_FALL,
}etat_led_pulse_vert=PULSE_FALL;
// Toutes les 1 ms.
if(temps_ms_led_cli != Temps_get_temps_ms()){
temps_ms_led_cli = Temps_get_temps_ms();
timer_led_ms--;
switch(etat_led_pulse_vert){
case PULSE_RISE:
vert_led = (vert_led_max-1) - (vert_led_max-1) * timer_led_ms / timer_led_max_ms + 1;
vert_led = vert_led & 0b111;
i2c_annexe_couleur_balise(vert_led << 2, 0xFFFF);
if(timer_led_ms<= 0){
i2c_annexe_couleur_balise(0, 0xFFFF);
timer_led_ms = timer_led_max_ms;
etat_led_pulse_vert=PULSE_FALL;
}
break;
case PULSE_FALL:
vert_led = (vert_led_max-1) * timer_led_ms / timer_led_max_ms + 1;
vert_led = vert_led & 0b111;
i2c_annexe_couleur_balise(vert_led << 2, 0xFFFF);
if(timer_led_ms<= 0){
timer_led_ms = timer_led_max_ms;
etat_led_pulse_vert=PULSE_RISE;
}
break;
}
}
}
enum etat_action_t Demonstration_attente(){
enum {
ATTENTE_DETECTION,
@ -145,6 +267,7 @@ enum etat_action_t Demonstration_attente(){
while(true){
Holonome_cyclique(PARAM_NO_MOTORS);
Balise_cli_orange_maintenance();
switch(etat_attente){
case ATTENTE_DETECTION:
@ -376,6 +499,52 @@ enum etat_action_t Demonstration_avance_puis_tourne(int avance_x_mm, int avance_
return ACTION_ECHEC;
}
/// @brief Rotation du robot sur lui-même du robot
/// @param angle_degrees : Rotation du robot sur lui-même
/// @return ACTION_TERMINEE
enum etat_action_t Demonstration_tourne(float angle_degrees){
enum {
DEMO_TOURNE,
DEMO_TOURNE_TERMINE
} etat_avance_puis_tourne = DEMO_TOURNE;
int pos_x_init_mm, pos_y_init_mm;
while(true){
struct trajectoire_t trajectoire;
Holonome_cyclique(PARAM_DEFAULT);
// Toutes les 1 ms.
if(temps_ms_demo != Temps_get_temps_ms()){
temps_ms_demo = Temps_get_temps_ms();
switch (etat_avance_puis_tourne)
{
case DEMO_TOURNE:
Trajectoire_rotation(&trajectoire, Localisation_get().x_mm, Localisation_get().y_mm,
Localisation_get().angle_radian, Localisation_get().angle_radian + (angle_degrees * DEGRE_EN_RADIAN) );
Trajet_config(TRAJECT_CONFIG_ROTATION_PURE);
if(Strategie_parcourir_trajet(trajectoire, 1, EVITEMENT_SANS_EVITEMENT) == ACTION_TERMINEE){
etat_avance_puis_tourne = DEMO_TOURNE_TERMINE;
Trajet_config(TRAJECT_CONFIG_STD);
}
break;
case DEMO_TOURNE_TERMINE:
etat_avance_puis_tourne = DEMO_TOURNE;
Moteur_Stop();
return ACTION_TERMINEE;
default:
break;
}
}
}
return ACTION_ECHEC;
}
/// @brief Déplacement suivant deux courbes de Bézier. Recommandé pour une démo sur une planche de 1m x 1,5m
/// @return ACTION_TERMINEE
enum etat_action_t Demonstration_bezier(){
@ -434,3 +603,128 @@ enum etat_action_t Demonstration_bezier(){
}
return ACTION_ECHEC;
}
/// @brief Leve le bras, et agite le doigt
/// @param bras
enum etat_action_t Demonstration_leve_bras(uint32_t bras){
static enum{
LB_LEVE_BRAS,
LB_TEMPO_BRAS,
LB_DOIGT_ATTRAPE_1,
LB_DOIGT_LACHE,
LB_DOIGT_ATTRAPE_2,
} DLB_status;
int timer_ms;
while(true){
Holonome_cyclique(PARAM_NO_MOTORS);
if(temps_ms_demo != Temps_get_temps_ms()){
temps_ms_demo = Temps_get_temps_ms();
timer_ms--;
switch(DLB_status){
case LB_LEVE_BRAS:
i2c_annexe_actionneur_pot(bras, BRAS_HAUT, DOIGT_LACHE);
DLB_status = LB_TEMPO_BRAS;
timer_ms = 250;
break;
case LB_TEMPO_BRAS:
if(timer_ms <= 0){
DLB_status = LB_DOIGT_ATTRAPE_1;
timer_ms=150;
}
break;
case LB_DOIGT_ATTRAPE_1:
i2c_annexe_actionneur_pot(bras, BRAS_HAUT, DOIGT_TIENT);
if(timer_ms <= 0){
DLB_status = LB_DOIGT_LACHE;
timer_ms=200;
}
break;
case LB_DOIGT_LACHE:
i2c_annexe_actionneur_pot(bras, BRAS_HAUT, DOIGT_LACHE);
if(timer_ms <= 0){
DLB_status = LB_DOIGT_ATTRAPE_2;
timer_ms=200;
}
break;
case LB_DOIGT_ATTRAPE_2:
i2c_annexe_actionneur_pot(bras, BRAS_HAUT, DOIGT_TIENT);
if(timer_ms <= 0){
DLB_status = LB_LEVE_BRAS;
return ACTION_TERMINEE;
}
break;
}
}
}
}
enum etat_action_t Demonstration_attrape_plante(void){
int32_t timer_ms;
enum {
DAP_ENVOI,
DAP_ATTENTE
} dap_status=DAP_ENVOI;
while(true){
Holonome_cyclique(PARAM_NO_MOTORS);
if(temps_ms_demo != Temps_get_temps_ms()){
temps_ms_demo = Temps_get_temps_ms();
timer_ms--;
switch(dap_status){
case DAP_ENVOI:
i2c_annexe_attrape_plante(PLANTE_BRAS_1);
dap_status = DAP_ATTENTE;
timer_ms=5000;
break;
case DAP_ATTENTE:
if (timer_ms <= 0){
dap_status=DAP_ENVOI;
return ACTION_TERMINEE;
}
break;
}
}
}
}
enum etat_action_t Demonstration_baisse_bras(void){
static int32_t timer_ms;
enum {
DBB_ENVOI,
DBB_ATTENTE
} dbb_status=DBB_ENVOI;
while(true){
Holonome_cyclique(PARAM_NO_MOTORS);
if(temps_ms_demo != Temps_get_temps_ms()){
temps_ms_demo = Temps_get_temps_ms();
timer_ms--;
switch(dbb_status){
case DBB_ENVOI:
for(int bras=0; bras < 6; bras++){
i2c_annexe_actionneur_pot(bras, BRAS_PLIE, DOIGT_LACHE);
}
dbb_status = DBB_ATTENTE;
timer_ms=500;
break;
case DBB_ATTENTE:
if (timer_ms <= 0){
dbb_status = DBB_ENVOI;
return ACTION_TERMINEE;
}
break;
}
}
}
}

View File

@ -45,7 +45,7 @@ int main() {
stdio_init_all();
//Demonstration_init();Demonstration_auto();
//while(mode_test());
while(mode_test());
//test_pseudo_homologation();
Holonome2023_init();

View File

@ -345,8 +345,8 @@ int test_aller_retour(){
switch(lettre){
case 'b':
case 'B':
Trajet_config(TRAJECT_CONFIG_AVANCE_DROIT);
Trajectoire_bezier(&trajectoire, 0, 0, -200., 450, 250, 450, 0, 0, 0, 0);
Trajet_config(TRAJECT_CONFIG_AVANCE_ET_TOURNE);
Trajectoire_bezier(&trajectoire, 0, 0, 2500, 0, 250, 1300, 0, 0, 0, 0);
printf("Trajectoire de Bézier\n");
break;