Detection_2023/main.c

220 lines
6.1 KiB
C

#include <stdio.h>
#include "pico/stdlib.h"
#include "pico/multicore.h"
#include "hardware/i2c.h"
#include "VL53L1X_Fonctions.h"
#include "SelectionCapteur.h"
#include "hardware/pio.h"
#include "hardware/i2c.h"
#include "ws2812.h"
#include "ws2812.pio.h"
#include "i2c_fifo.h"
#include "i2c_slave.h"
#include "Tests.h"
#define I2C0_SDA_PIN 0
#define I2C0_SCL_PIN 1
#define I2C1_SDA_PIN 18
#define I2C1_SCL_PIN 19
void i2c_master_init(void);
int continuous_reading(uint8_t device);
int calibration(uint8_t device);
int change_address(uint8_t * device, uint8_t new_i2c_7bits_address);
void initialise_adresses(void);
void affiche_distance_sur_led();
void init_sensors(void);
uint8_t tampon_commande_led[3];
#define I2C_SLAVE_ADDRESS 0x18
#define ADRESSE_RECEPTION_DATA 0x10
#define ADRESSE_COULEUR_LED 0x10
#define ADRESSE_MASQUE_LED_1 0x11
#define ADRESSE_MASQUE_LED_2 0x12
static const uint I2C_SLAVE_SDA_PIN = I2C1_SDA_PIN;
static const uint I2C_SLAVE_SCL_PIN = I2C1_SCL_PIN;
// The slave implements a 256 byte memory. To write a series of bytes, the master first
// writes the memory address, followed by the data. The address is automatically incremented
// for each byte transferred, looping back to 0 upon reaching the end. Reading is done
// sequentially from the current memory address.
static struct
{
uint8_t mem[256];
uint8_t mem_address;
bool mem_address_written;
} context;
// Our handler is called from the I2C ISR, so it must complete quickly. Blocking calls /
// printing to stdio may interfere with interrupt handling.
static void i2c_slave_handler(i2c_inst_t *i2c, i2c_slave_event_t event) {
switch (event) {
case I2C_SLAVE_RECEIVE: // master has written some data
if (!context.mem_address_written) {
// writes always start with the memory address
context.mem_address = i2c_read_byte(i2c);
context.mem_address_written = true;
} else {
// save into memory
context.mem[context.mem_address] = i2c_read_byte(i2c);
context.mem_address++;
}
break;
case I2C_SLAVE_REQUEST: // master is requesting data
// load from memory
i2c_write_byte(i2c, context.mem[context.mem_address]);
context.mem_address++;
break;
case I2C_SLAVE_FINISH: // master has signalled Stop / Restart
context.mem_address_written = false;
break;
default:
break;
}
}
void i2c_set_slave_mode_perso(i2c_inst_t *i2c, uint8_t addr) {
i2c->hw->enable = 0;
//while( !(i2c->hw->enable_status & 0x1) );
i2c->hw->sar = addr;
i2c->hw->con = 0;
i2c->hw->enable = 1;
}
static void setup_slave() {
gpio_init(I2C_SLAVE_SDA_PIN);
gpio_set_function(I2C_SLAVE_SDA_PIN, GPIO_FUNC_I2C);
gpio_pull_up(I2C_SLAVE_SDA_PIN);
gpio_init(I2C_SLAVE_SCL_PIN);
gpio_set_function(I2C_SLAVE_SCL_PIN, GPIO_FUNC_I2C);
gpio_pull_up(I2C_SLAVE_SCL_PIN);
i2c_slave_init(i2c1, I2C_SLAVE_ADDRESS, &i2c_slave_handler);
}
void blink(void){
const uint LED_PIN = PICO_DEFAULT_LED_PIN;
while(1){
printf("couleur_Led:%2x\n", tampon_commande_led[0]);
printf("masque_Led:%3x\n", (tampon_commande_led[1]<<8) | tampon_commande_led[2]);
for(uint8_t capteur=0; capteur<12; capteur++){
printf(">distance%x:%d\n", capteur, context.mem[capteur]);
}
gpio_put(LED_PIN, !gpio_get(LED_PIN));
sleep_ms(20);
}
}
void main(void)
{
int status;
uint8_t distance_capteur_cm[12];
const uint LED_PIN = PICO_DEFAULT_LED_PIN;
gpio_init(LED_PIN);
gpio_set_dir(LED_PIN, GPIO_OUT);
gpio_put(LED_PIN, 1);
tampon_commande_led[0]=0;
tampon_commande_led[1]=0;
tampon_commande_led[2]=0;
uint8_t VL53L1X_device = 0x29;
stdio_init_all();
i2c_master_init();
Selection_capteur_init();
//Selection_capteur_select(1);
ws2812_init();
printf("End waiting\n");
setup_slave();
//Tests();
multicore_launch_core1(blink);
initialise_adresses();
uint8_t capteur_courant=0;
while(1){
// Lecture des capteurs
if(capteur_pret(capteur_courant)){
uint8_t distance_cm;
if(capteur_lire_distance_cm(capteur_courant, &distance_cm)){
distance_capteur_cm[capteur_courant]= distance_cm;
}
}
capteur_courant++;
if(capteur_courant > 11){
capteur_courant = 0;
}
// Affichage des distances sur les LEDs.
affiche_distance_sur_led(distance_capteur_cm);
// Envoie des valeurs des capteurs
for(uint8_t capteur=0; capteur<12; capteur++){
context.mem[capteur] = distance_capteur_cm[capteur];
}
// Reception des données à afficher sur les capteurs
// Si nous avons reçu une nouvelle commande
if(tampon_commande_led[0] != context.mem[0x10] ||
tampon_commande_led[1] != context.mem[0x11] ||
tampon_commande_led[2] != context.mem[0x12] ){
tampon_commande_led[0] = context.mem[0x10];
tampon_commande_led[1] = context.mem[0x11];
tampon_commande_led[2] = context.mem[0x12];
uint8_t couleur = tampon_commande_led[0];
uint16_t masque_led = (tampon_commande_led[1] << 8) | tampon_commande_led[2];
reset_affichage_led();
for(uint8_t led=0; led < 12; led++){
if((masque_led >> led) & 0x01){
affiche_couleur_sur_led(couleur, led);
}
}
ws2812_affiche_buffer();
}
}
}
void i2c_master_init(void){
//stdio_init_all();
i2c_init(i2c0, 100 * 1000);
printf("Initialisation des broches\n");
for(int i=0; i++; i<=28){
if(gpio_get_function(i) == GPIO_FUNC_I2C){
printf("Pin I2C : %d\n", i);
gpio_set_function(i, GPIO_FUNC_NULL);
}
}
printf("%d and %d for I2C\n", I2C0_SDA_PIN, I2C0_SCL_PIN);
gpio_set_function(I2C0_SDA_PIN, GPIO_FUNC_I2C);
gpio_set_function(I2C0_SCL_PIN, GPIO_FUNC_I2C);
}