#include #include "pico/stdlib.h" #include "pico/multicore.h" #include "hardware/i2c.h" #include "VL53L1X_Fonctions.h" #include "SelectionCapteur.h" #include "hardware/pio.h" #include "hardware/i2c.h" #include "ws2812.h" #include "ws2812.pio.h" #include "i2c_fifo.h" #include "i2c_slave.h" #include "Tests.h" #define I2C0_SDA_PIN 0 #define I2C0_SCL_PIN 1 #define I2C1_SDA_PIN 18 #define I2C1_SCL_PIN 19 void i2c_master_init(void); int continuous_reading(uint8_t device); int calibration(uint8_t device); int change_address(uint8_t * device, uint8_t new_i2c_7bits_address); void initialise_adresses(void); void affiche_distance_sur_led(); void init_sensors(void); uint8_t tampon_commande_led[3]; #define I2C_SLAVE_ADDRESS 0x18 #define ADRESSE_RECEPTION_DATA 0x10 #define ADRESSE_COULEUR_LED 0x10 #define ADRESSE_MASQUE_LED_1 0x11 #define ADRESSE_MASQUE_LED_2 0x12 static const uint I2C_SLAVE_SDA_PIN = I2C1_SDA_PIN; static const uint I2C_SLAVE_SCL_PIN = I2C1_SCL_PIN; // The slave implements a 256 byte memory. To write a series of bytes, the master first // writes the memory address, followed by the data. The address is automatically incremented // for each byte transferred, looping back to 0 upon reaching the end. Reading is done // sequentially from the current memory address. static struct { uint8_t mem[256]; uint8_t mem_address; bool mem_address_written; } context; // Our handler is called from the I2C ISR, so it must complete quickly. Blocking calls / // printing to stdio may interfere with interrupt handling. static void i2c_slave_handler(i2c_inst_t *i2c, i2c_slave_event_t event) { switch (event) { case I2C_SLAVE_RECEIVE: // master has written some data if (!context.mem_address_written) { // writes always start with the memory address context.mem_address = i2c_read_byte(i2c); context.mem_address_written = true; } else { // save into memory context.mem[context.mem_address] = i2c_read_byte(i2c); context.mem_address++; } break; case I2C_SLAVE_REQUEST: // master is requesting data // load from memory i2c_write_byte(i2c, context.mem[context.mem_address]); context.mem_address++; break; case I2C_SLAVE_FINISH: // master has signalled Stop / Restart context.mem_address_written = false; break; default: break; } } void i2c_set_slave_mode_perso(i2c_inst_t *i2c, uint8_t addr) { i2c->hw->enable = 0; //while( !(i2c->hw->enable_status & 0x1) ); i2c->hw->sar = addr; i2c->hw->con = 0; i2c->hw->enable = 1; } static void setup_slave() { gpio_init(I2C_SLAVE_SDA_PIN); gpio_set_function(I2C_SLAVE_SDA_PIN, GPIO_FUNC_I2C); gpio_pull_up(I2C_SLAVE_SDA_PIN); gpio_init(I2C_SLAVE_SCL_PIN); gpio_set_function(I2C_SLAVE_SCL_PIN, GPIO_FUNC_I2C); gpio_pull_up(I2C_SLAVE_SCL_PIN); i2c_slave_init(i2c1, I2C_SLAVE_ADDRESS, &i2c_slave_handler); } void blink(void){ const uint LED_PIN = PICO_DEFAULT_LED_PIN; while(1){ printf("couleur_Led:%2x\n", tampon_commande_led[0]); printf("masque_Led:%3x\n", (tampon_commande_led[1]<<8) | tampon_commande_led[2]); for(uint8_t capteur=0; capteur<12; capteur++){ printf(">distance%x:%d\n", capteur, context.mem[capteur]); } gpio_put(LED_PIN, !gpio_get(LED_PIN)); sleep_ms(20); } } void main(void) { int status; uint8_t distance_capteur_cm[12]; const uint LED_PIN = PICO_DEFAULT_LED_PIN; gpio_init(LED_PIN); gpio_set_dir(LED_PIN, GPIO_OUT); gpio_put(LED_PIN, 1); tampon_commande_led[0]=0; tampon_commande_led[1]=0; tampon_commande_led[2]=0; uint8_t VL53L1X_device = 0x29; stdio_init_all(); i2c_master_init(); Selection_capteur_init(); //Selection_capteur_select(1); ws2812_init(); printf("End waiting\n"); setup_slave(); //Tests(); multicore_launch_core1(blink); initialise_adresses(); uint8_t capteur_courant=0; while(1){ // Lecture des capteurs if(capteur_pret(capteur_courant)){ uint8_t distance_cm; if(capteur_lire_distance_cm(capteur_courant, &distance_cm)){ distance_capteur_cm[capteur_courant]= distance_cm; } } capteur_courant++; if(capteur_courant > 11){ capteur_courant = 0; } // Affichage des distances sur les LEDs. affiche_distance_sur_led(distance_capteur_cm); // Envoie des valeurs des capteurs for(uint8_t capteur=0; capteur<12; capteur++){ context.mem[capteur] = distance_capteur_cm[capteur]; } // Reception des données à afficher sur les capteurs // Si nous avons reçu une nouvelle commande if(tampon_commande_led[0] != context.mem[0x10] || tampon_commande_led[1] != context.mem[0x11] || tampon_commande_led[2] != context.mem[0x12] ){ tampon_commande_led[0] = context.mem[0x10]; tampon_commande_led[1] = context.mem[0x11]; tampon_commande_led[2] = context.mem[0x12]; uint8_t couleur = tampon_commande_led[0]; uint16_t masque_led = (tampon_commande_led[1] << 8) | tampon_commande_led[2]; reset_affichage_led(); for(uint8_t led=0; led < 12; led++){ if((masque_led >> led) & 0x01){ affiche_couleur_sur_led(couleur, led); } } ws2812_affiche_buffer(); } } } void i2c_master_init(void){ //stdio_init_all(); i2c_init(i2c0, 100 * 1000); printf("Initialisation des broches\n"); for(int i=0; i++; i<=28){ if(gpio_get_function(i) == GPIO_FUNC_I2C){ printf("Pin I2C : %d\n", i); gpio_set_function(i, GPIO_FUNC_NULL); } } printf("%d and %d for I2C\n", I2C0_SDA_PIN, I2C0_SCL_PIN); gpio_set_function(I2C0_SDA_PIN, GPIO_FUNC_I2C); gpio_set_function(I2C0_SCL_PIN, GPIO_FUNC_I2C); }