1371 lines
37 KiB
C
1371 lines
37 KiB
C
#include <stdio.h>
|
|
#include "pico/multicore.h"
|
|
#include "pico/stdlib.h"
|
|
#include "pico/stdio.h"
|
|
#include "hardware/gpio.h"
|
|
#include "hardware/i2c.h"
|
|
#include "pico/binary_info.h"
|
|
#include "math.h"
|
|
#include "Test.h"
|
|
|
|
#include "APDS_9960.h"
|
|
#include "gyro.h"
|
|
#include "Asser_Moteurs.h"
|
|
#include "Asser_Position.h"
|
|
#include "Balise_VL53L1X.h"
|
|
#include "Commande_vitesse.h"
|
|
#include "Geometrie_robot.h"
|
|
#include "i2c_annexe.h"
|
|
#include "i2c_maitre.h"
|
|
#include "Localisation.h"
|
|
#include "Moteurs.h"
|
|
#include "QEI.h"
|
|
#include "Robot_config.h"
|
|
#include "Servomoteur.h"
|
|
#include "spi_nb.h"
|
|
#include "Temps.h"
|
|
#include "Trajectoire.h"
|
|
#include "Trajet.h"
|
|
|
|
#include "Test_strategie.h"
|
|
#include "Test.h"
|
|
|
|
#define V_INIT -999.0
|
|
#define TEST_TIMEOUT_US 10000000
|
|
|
|
int test_APDS9960(void);
|
|
int test_moteurs(void);
|
|
int test_QIE(void);
|
|
int test_QIE_mm(void);
|
|
int test_vitesse_moteur(enum t_moteur moteur);
|
|
int test_asser_moteur(void);
|
|
int test_localisation(void);
|
|
int test_avance(void);
|
|
int test_cde_vitesse(void);
|
|
int test_cde_vitesse_rotation(void);
|
|
int test_cde_rotation_ref_robot(double centre_x_mm, double centre_y_mm);
|
|
int test_cde_vitesse_rectangle(void);
|
|
int test_cde_vitesse_cercle(void);
|
|
int test_asser_position_avance(void);
|
|
int test_asser_position_avance_et_tourne(int);
|
|
int test_trajectoire(void);
|
|
int test_i2c_bus(void);
|
|
void affiche_localisation(void);
|
|
int test_i2c_lecture_pico_annex();
|
|
int test_i2c_lecture_pico_annex_nb();
|
|
int test_i2c_lecture_pico_annex_nb2();
|
|
int test_i2c_ecriture_pico_annex_nb();
|
|
int test_i2c_ecriture_pico_annex_nb_2();
|
|
int test_aller_retour();
|
|
void test_trajectoire_teleplot();
|
|
int test_capteurs_balise(void);
|
|
int test_geometrie(void);
|
|
|
|
|
|
// Mode test : renvoie 0 pour quitter le mode test
|
|
int mode_test(){
|
|
static int iteration = 2;
|
|
printf("Appuyez sur une touche pour entrer en mode test :\n");
|
|
printf("A - pour asser_moteurs (rotation)\n");
|
|
printf("B - pour avance (asser_moteur)\n");
|
|
printf("C - pour les codeurs\n");
|
|
printf("D - pour les codeurs (somme en mm)\n");
|
|
printf("E - Commande en vitesse...\n");
|
|
printf("F - Strategie...\n");
|
|
printf("G - Lecture des capteurs\n");
|
|
printf("H - Asser Position - avance\n");
|
|
printf("I - Asser Position - avance et tourne (gyro)\n");
|
|
printf("J - Asser Position - avance et tourne (sans gyro)\n");
|
|
printf("K - Trajets aller retour avec Gyro\n");
|
|
printf("L - pour la localisation\n");
|
|
printf("M - pour les moteurs\n");
|
|
printf("N - Fonctions geometrique\n");
|
|
printf("T - Trajectoire\n");
|
|
printf("U - Scan du bus i2c\n");
|
|
printf("V - APDS_9960\n");
|
|
printf("W - Com i2c Pico Annexe\n");
|
|
printf("X - Com i2c Pico Annexe - non bloquant\n");
|
|
printf("Y - I2C - Turbine & porte\n");
|
|
printf("Z - I2C - Turbine & porte + contacteurs - fonctions encapsulees\n");
|
|
stdio_flush();
|
|
int rep = getchar_timeout_us(TEST_TIMEOUT_US);
|
|
stdio_flush();
|
|
switch (rep)
|
|
{
|
|
case 'a':
|
|
case 'A':
|
|
while(test_asser_moteur());
|
|
break;
|
|
case 'b':
|
|
case 'B':
|
|
while(test_avance());
|
|
break;
|
|
|
|
case 'C':
|
|
case 'c':
|
|
while(test_QIE());
|
|
break;
|
|
|
|
case 'D':
|
|
case 'd':
|
|
while(test_QIE_mm());
|
|
break;
|
|
|
|
case 'E':
|
|
case 'e':
|
|
while(test_cde_vitesse());
|
|
break;
|
|
|
|
case 'F':
|
|
case 'f':
|
|
while(test_strategie());
|
|
break;
|
|
|
|
case 'G':
|
|
case 'g':
|
|
while(test_capteurs_balise());
|
|
break;
|
|
|
|
case 'H':
|
|
case 'h':
|
|
while(test_asser_position_avance());
|
|
break;
|
|
|
|
case 'I':
|
|
case 'i':
|
|
while(test_asser_position_avance_et_tourne(1));
|
|
break;
|
|
|
|
case 'J':
|
|
case 'j':
|
|
while(test_asser_position_avance_et_tourne(0));
|
|
break;
|
|
|
|
case 'K':
|
|
case 'k':
|
|
while(test_aller_retour());
|
|
break;
|
|
|
|
case 'L':
|
|
case 'l':
|
|
while(test_localisation());
|
|
break;
|
|
|
|
case 'M':
|
|
case 'm':
|
|
while(test_moteurs());
|
|
break;
|
|
|
|
case 'N':
|
|
case 'n':
|
|
while(test_geometrie());
|
|
break;
|
|
|
|
case 'T':
|
|
case 't':
|
|
while(test_trajectoire());
|
|
break;
|
|
|
|
case 'U':
|
|
case 'u':
|
|
while(test_i2c_bus());
|
|
break;
|
|
|
|
case 'V':
|
|
case 'v':
|
|
while(test_APDS9960());
|
|
break;
|
|
|
|
case 'W':
|
|
case 'w':
|
|
while(test_i2c_lecture_pico_annex());
|
|
break;
|
|
|
|
case 'X':
|
|
case 'x':
|
|
while(test_i2c_lecture_pico_annex_nb2());
|
|
break;
|
|
|
|
case 'Y':
|
|
case 'y':
|
|
while(test_i2c_ecriture_pico_annex_nb());
|
|
break;
|
|
|
|
case 'Z':
|
|
case 'z':
|
|
while(test_i2c_ecriture_pico_annex_nb_2());
|
|
break;
|
|
|
|
case PICO_ERROR_TIMEOUT:
|
|
iteration--;
|
|
if(iteration == 0){
|
|
//printf("Sortie du mode test\n");
|
|
//return 0;
|
|
}
|
|
|
|
default:
|
|
printf("Commande inconnue\n");
|
|
break;
|
|
}
|
|
return 1;
|
|
|
|
}
|
|
|
|
int test_continue_test(){
|
|
int lettre;
|
|
//printf("q pour quitter, une autre touche pour un nouveau test.\n");
|
|
do{
|
|
lettre = getchar_timeout_us(0);
|
|
}while(lettre == PICO_ERROR_TIMEOUT || lettre == 0);
|
|
switch(lettre){
|
|
case 'q':
|
|
case 'Q':
|
|
return 0;
|
|
default:
|
|
return 1;
|
|
}
|
|
|
|
}
|
|
|
|
int test_capteurs_balise(void){
|
|
printf("Test de la balise\n");
|
|
i2c_maitre_init();
|
|
Localisation_set(0,0,0);
|
|
Balise_VL53L1X_init();
|
|
|
|
while(true){
|
|
uint8_t min_distance;
|
|
i2c_gestion(i2c0);
|
|
i2c_annexe_gestion();
|
|
Balise_VL53L1X_gestion();
|
|
|
|
min_distance = Balise_VL53L1X_get_min_distance();
|
|
printf(">min_distance:%d\n",min_distance);
|
|
for(uint8_t capteur=0; capteur<12; capteur++){
|
|
printf(">c%d:%d\n",capteur, Balise_VL53L1X_get_capteur_cm(capteur));
|
|
}
|
|
sleep_ms(20);
|
|
}
|
|
|
|
}
|
|
|
|
bool reserved_addr(uint8_t addr) {
|
|
return (addr & 0x78) == 0 || (addr & 0x78) == 0x78;
|
|
}
|
|
|
|
int test_APDS9960(){
|
|
int lettre;
|
|
|
|
printf("Initialisation\n");
|
|
APDS9960_Init();
|
|
printf("Lecture...\n");
|
|
/*
|
|
do{
|
|
APDS9960_Lire();
|
|
lettre = getchar_timeout_us(0);
|
|
stdio_flush();
|
|
}while(lettre == PICO_ERROR_TIMEOUT);*/
|
|
while(1){
|
|
APDS9960_Lire();
|
|
sleep_ms(100);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int test_i2c_lecture_pico_annex(){
|
|
i2c_maitre_init();
|
|
uint8_t tampon[10];
|
|
uint8_t registre=2;
|
|
uint8_t adresse = 0x17;
|
|
int ret;
|
|
|
|
ret = i2c_write_blocking(i2c0, adresse,®istre, 1, false);
|
|
if(ret < 0){
|
|
printf("Erreur I2C : %d", ret);
|
|
return 0;
|
|
}
|
|
|
|
ret = i2c_read_blocking(i2c_default, adresse, tampon, 10, false);
|
|
if(ret < 0){
|
|
printf("Erreur I2C : %d", ret);
|
|
}else{
|
|
for(int i=0; i<10; i++){
|
|
printf("%c", tampon[i]);
|
|
}
|
|
printf("\n");
|
|
|
|
for(int i=0; i<10; i++){
|
|
printf("%2x ", tampon[i]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
return test_continue_test();
|
|
}
|
|
|
|
int test_i2c_lecture_pico_annex_nb(){
|
|
i2c_maitre_init();
|
|
uint8_t tampon[10];
|
|
uint8_t registre=2;
|
|
uint8_t adresse = 0x17;
|
|
uint32_t time_i2c[5];
|
|
const uint8_t T_MAX_I2C = 10;
|
|
int ret;
|
|
|
|
time_i2c[0] = time_us_32();
|
|
|
|
// On charge l'adresse de l'esclave
|
|
i2c0->hw->enable = 0;
|
|
i2c0->hw->tar = adresse;
|
|
i2c0->hw->enable = 1;
|
|
|
|
// On envoie l'adresse du registre à lire
|
|
// Pas de stop, pas de restart, écriture : 0,
|
|
|
|
i2c0->hw->data_cmd = registre;
|
|
|
|
uint8_t first = false;
|
|
uint8_t last = false;
|
|
|
|
for(int i=0; i<T_MAX_I2C; i++){
|
|
first = false;
|
|
last = false;
|
|
if (i == 0){
|
|
first = true;
|
|
}
|
|
if(i == T_MAX_I2C -1){
|
|
last = true;
|
|
}
|
|
|
|
i2c0->hw->data_cmd =
|
|
bool_to_bit(first) << I2C_IC_DATA_CMD_RESTART_LSB |
|
|
bool_to_bit(last) << I2C_IC_DATA_CMD_STOP_LSB |
|
|
I2C_IC_DATA_CMD_CMD_BITS; // -> 1 for read
|
|
}
|
|
|
|
time_i2c[1] = time_us_32() - time_i2c[0] ;
|
|
|
|
// On attend la fin de la transaction i2c
|
|
while(i2c0->hw->status & I2C_IC_STATUS_MST_ACTIVITY_BITS);
|
|
|
|
time_i2c[2] = time_us_32() - time_i2c[0] ;
|
|
|
|
// On lit le tampon I2C
|
|
// uint8_t * dst;
|
|
// dst = tampon;
|
|
|
|
for(int i=0; i<T_MAX_I2C; i++){
|
|
// On attend une donnée
|
|
while(!i2c_get_read_available(i2c0));
|
|
|
|
// Code erreur
|
|
if(i2c0->hw->tx_abrt_source){
|
|
printf("Erreur I2C: Abort : %4x\n", i2c0->hw->tx_abrt_source);
|
|
}
|
|
|
|
//On lit la donnée
|
|
tampon[i] = (uint8_t) i2c0->hw->data_cmd;
|
|
}
|
|
|
|
time_i2c[3] = time_us_32() - time_i2c[0] ;
|
|
|
|
// Affichage
|
|
for(int i=0; i<T_MAX_I2C; i++){
|
|
printf("%c", tampon[i]);
|
|
}
|
|
printf("\n");
|
|
|
|
for(int i=0; i<T_MAX_I2C; i++){
|
|
printf("%2x ", tampon[i]);
|
|
}
|
|
printf("\n");
|
|
|
|
printf("T_init: %u, T_attente: %u, T_lecture: %u\n", time_i2c[1], time_i2c[2], time_i2c[3]);
|
|
|
|
return test_continue_test();
|
|
}
|
|
|
|
int test_i2c_lecture_pico_annex_nb2(){
|
|
i2c_maitre_init();
|
|
|
|
uint8_t tampon[10];
|
|
uint8_t registre=8;
|
|
uint8_t adresse = 0x17;
|
|
uint32_t time_i2c[5];
|
|
const uint8_t T_MAX_I2C = 10;
|
|
enum i2c_resultat_t retour_i2c = I2C_EN_COURS;
|
|
|
|
time_i2c[0] = time_us_32();
|
|
time_i2c[2] = 0;
|
|
|
|
while(retour_i2c == I2C_EN_COURS){
|
|
time_i2c[1] = time_us_32(); // Pour mesurer le temps d'execution
|
|
i2c_gestion(i2c0);
|
|
retour_i2c = i2c_lire_registre_nb(adresse, registre, tampon, T_MAX_I2C);
|
|
time_i2c[2] += time_us_32() - time_i2c[1]; // Pour mesurer le temps d'execution
|
|
sleep_us(100); // Attente, ou le reste du code
|
|
}
|
|
time_i2c[3] = time_us_32() - time_i2c[0];
|
|
|
|
// Affichage
|
|
for(int i=0; i<T_MAX_I2C; i++){
|
|
printf("%c", tampon[i]);
|
|
}
|
|
printf("\n");
|
|
|
|
for(int i=0; i<T_MAX_I2C; i++){
|
|
printf("%2x ", tampon[i]);
|
|
}
|
|
printf("\n");
|
|
|
|
printf("Temps lecture : %u microsecondes, temps specifique i2c : %u microsecondes.\n", time_i2c[3], time_i2c[2]);
|
|
|
|
return test_continue_test();
|
|
}
|
|
|
|
|
|
int test_i2c_ecriture_pico_annex_nb(){
|
|
i2c_maitre_init();
|
|
|
|
uint8_t tampon[10];
|
|
uint8_t registre=0x09;
|
|
uint8_t adresse = 0x17;
|
|
uint32_t time_i2c[5];
|
|
const uint8_t T_I2C_ENVOI = 2;
|
|
static uint8_t commande=0;
|
|
enum i2c_resultat_t retour_i2c = I2C_EN_COURS;
|
|
|
|
|
|
printf("F - Ferme porte\n");
|
|
printf("O - Ouvre porte\n");
|
|
printf("T - Turbine On\n");
|
|
printf("U - Turbine Off\n");
|
|
printf("P - Propulseur On\n");
|
|
printf("M - Propulseur Off\n");
|
|
printf("Q pour quitter\n");
|
|
|
|
int lettre;
|
|
do{
|
|
lettre = getchar_timeout_us(0);
|
|
stdio_flush();
|
|
|
|
}while(lettre == PICO_ERROR_TIMEOUT || lettre == '\0');
|
|
|
|
tampon[1] = 0x0;
|
|
switch(lettre){
|
|
case 'F':
|
|
case 'f':
|
|
commande = commande | 0x02; // 0b0000 0010
|
|
printf("=> Ferme porte\n");
|
|
break;
|
|
|
|
case 'O':
|
|
case 'o':
|
|
commande = commande & 0xFD; // 0b1111 1101
|
|
printf("=> Ouvre porte\n");
|
|
break;
|
|
|
|
case 't':
|
|
case 'T':
|
|
commande = commande | 0x01; // 0b0000 0001
|
|
printf("=> Active turbine\n");
|
|
break;
|
|
|
|
case 'u':
|
|
case 'U':
|
|
commande = commande & 0xFE; // 0b1111 1110
|
|
printf("=> Arrete turbine\n");
|
|
break;
|
|
|
|
case 'p':
|
|
case 'P':
|
|
commande = commande | 0x04; // 0b0000 0100
|
|
printf("=> Active propulseur\n");
|
|
break;
|
|
|
|
case 'm':
|
|
case 'M':
|
|
commande = commande & 0xFB; // 0b1111 1011
|
|
printf("=> Arrete propulseur\n");
|
|
break;
|
|
|
|
case 'q':
|
|
case 'Q':
|
|
return 0;
|
|
break;
|
|
|
|
}
|
|
|
|
tampon[0] = 54;
|
|
tampon[1] = commande;
|
|
|
|
time_i2c[0] = time_us_32();
|
|
time_i2c[2] = 0;
|
|
|
|
while(retour_i2c == I2C_EN_COURS){
|
|
time_i2c[1] = time_us_32(); // Pour mesurer le temps d'execution
|
|
i2c_gestion(i2c0);
|
|
retour_i2c = i2c_ecrire_registre_nb(adresse, registre, tampon, T_I2C_ENVOI);
|
|
time_i2c[2] += time_us_32() - time_i2c[1]; // Pour mesurer le temps d'execution
|
|
sleep_us(100); // Attente, ou le reste du code
|
|
}
|
|
time_i2c[3] = time_us_32() - time_i2c[0];
|
|
|
|
printf("Temps lecture : %u microsecondes, temps specifique i2c : %u microsecondes.\n", time_i2c[3], time_i2c[2]);
|
|
|
|
return 1;
|
|
}
|
|
|
|
void affiche_contacteur(){
|
|
while(1){
|
|
printf(">contacteur_butee_A:%d\n", i2c_annexe_get_contacteur_butee_A());
|
|
printf(">contacteur_butee_C:%d\n", i2c_annexe_get_contacteur_butee_C());
|
|
printf(">contacteur_longer_A:%d\n", i2c_annexe_get_contacteur_longer_A());
|
|
printf(">contacteur_longer_C:%d\n", i2c_annexe_get_contacteur_longer_C());
|
|
}
|
|
}
|
|
|
|
/// @brief Test les fonctions définies dans I2C_Annexe
|
|
/// @return 1 pour continuer le test, 0 pour arrêter le test
|
|
int test_i2c_ecriture_pico_annex_nb_2(){
|
|
i2c_maitre_init();
|
|
|
|
uint32_t time_i2c[5];
|
|
const uint8_t T_I2C_ENVOI = 2;
|
|
static uint8_t commande=0;
|
|
enum i2c_resultat_t retour_i2c = I2C_EN_COURS;
|
|
|
|
|
|
printf("F - Ferme porte\n");
|
|
printf("O - Ouvre porte\n");
|
|
printf("T - Turbine On\n");
|
|
printf("U - Turbine Off\n");
|
|
printf("P - Propulseur On\n");
|
|
printf("M - Propulseur Off\n");
|
|
|
|
int lettre;
|
|
int continue_test=1;
|
|
|
|
time_i2c[0] = time_us_32();
|
|
time_i2c[1] = time_us_32();
|
|
time_i2c[2] = 0;
|
|
|
|
multicore_launch_core1(affiche_contacteur);
|
|
|
|
while(continue_test){
|
|
lettre = getchar_timeout_us(0);
|
|
if(lettre != PICO_ERROR_TIMEOUT && lettre != '\0'){
|
|
printf("lettre !\n");
|
|
switch(lettre){
|
|
case 'F':
|
|
case 'f':
|
|
i2c_annexe_ferme_porte();
|
|
printf("=> Ferme porte\n");
|
|
break;
|
|
|
|
case 'O':
|
|
case 'o':
|
|
i2c_annexe_ouvre_porte();
|
|
printf("=> Ouvre porte\n");
|
|
break;
|
|
|
|
case 't':
|
|
case 'T':
|
|
i2c_annexe_active_turbine();
|
|
printf("=> Active turbine\n");
|
|
break;
|
|
|
|
case 'u':
|
|
case 'U':
|
|
i2c_annexe_desactive_turbine();
|
|
printf("=> Arrete turbine\n");
|
|
break;
|
|
|
|
case 'm':
|
|
case 'M':
|
|
i2c_annexe_desactive_propulseur();
|
|
printf("=> Arrete propulseur\n");
|
|
break;
|
|
|
|
case 'p':
|
|
case 'P':
|
|
i2c_annexe_active_propulseur();
|
|
printf("=> Active propulseur\n");
|
|
break;
|
|
|
|
case 'q':
|
|
case 'Q':
|
|
continue_test=0;
|
|
printf("Quitte\n");
|
|
break;
|
|
|
|
default:
|
|
printf("lettre non reconnue: %d %c\n", lettre, lettre);
|
|
}
|
|
}
|
|
|
|
i2c_gestion(i2c0);
|
|
i2c_annexe_gestion();
|
|
|
|
}
|
|
multicore_reset_core1();
|
|
|
|
return test_continue_test();
|
|
}
|
|
|
|
int test_i2c_bus(){
|
|
// Adresse I2C : 0b0100 000 R/W
|
|
// Lecture des broches sur les registres 0 et 1
|
|
// Registre 2 et 3 : valeur des broches en sorties
|
|
// Registre 4 et 5 : INversion de polarité
|
|
// Registre 6 et 7 : Configuration entrée (1) ou sortie (0)
|
|
|
|
uint8_t reception[8];
|
|
uint8_t emission[8];
|
|
//uint8_t adresse = 0b0100000;
|
|
uint8_t adresse = 0x20;
|
|
int statu;
|
|
int lettre;
|
|
|
|
emission[0]=6; // Registre à lire
|
|
|
|
i2c_maitre_init();
|
|
// Scan bus I2C - cf SDK
|
|
printf("\nI2C Bus Scan\n");
|
|
printf(" 0 1 2 3 4 5 6 7 8 9 A B C D E F\n");
|
|
for (int addr = 0; addr < (1 << 7); ++addr) {
|
|
if (addr % 16 == 0) {
|
|
printf("%02x ", addr);
|
|
}
|
|
int ret;
|
|
uint8_t rxdata=0x55;
|
|
if (reserved_addr(addr))
|
|
ret = PICO_ERROR_GENERIC;
|
|
else
|
|
ret = i2c_read_blocking(i2c_default, addr, &rxdata, 1, false);
|
|
|
|
printf(ret < 0 ? "." : "@");
|
|
printf(addr % 16 == 15 ? "\n" : " ");
|
|
}
|
|
printf("Done.\n");
|
|
return 0;
|
|
|
|
do{
|
|
statu = i2c_write_blocking (i2c0, adresse, emission, 1, 0);
|
|
if(statu == PICO_ERROR_GENERIC){
|
|
printf("Emission : Address not acknowledged, no device present.\n");
|
|
return 0;
|
|
}else{
|
|
printf("Emission : Ok\n");
|
|
}
|
|
|
|
statu = i2c_read_blocking(i2c0, adresse, reception, 2, 0);
|
|
if(statu == PICO_ERROR_GENERIC){
|
|
printf("Reception : Address not acknowledged, no device present.\n");
|
|
return 0;
|
|
}else{
|
|
printf("Recetion : Ok\n");
|
|
}
|
|
printf("%2.x%2.x\n",reception[0], reception[1]);
|
|
|
|
lettre = getchar_timeout_us(0);
|
|
stdio_flush();
|
|
}while(lettre == PICO_ERROR_TIMEOUT);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
void test_trajectoire_printf(){
|
|
struct position_t _position;
|
|
while(1){
|
|
_position = Trajet_get_consigne();
|
|
printf("T: %ld, X: %f, Y: %f, orientation: %2.1f\n", time_us_32()/1000, _position.x_mm, _position.y_mm, _position.angle_radian/M_PI*180);
|
|
}
|
|
|
|
}
|
|
|
|
void test_trajectoire_teleplot(){
|
|
struct position_t _position, _consigne;
|
|
_consigne = Trajet_get_consigne();
|
|
while(1){
|
|
_consigne = Trajet_get_consigne();
|
|
_position = Localisation_get();
|
|
uint32_t temps;
|
|
temps = time_us_32()/1000;
|
|
printf(">X:%ld:%f\n>Y:%ld:%f\n>orientation:%ld:%f\n", temps, _position.x_mm, temps, _position.y_mm, temps, _position.angle_radian/M_PI*180);
|
|
printf(">Consigne_X:%ld:%f\n>Consigne_Y:%ld:%f\n>Consigne_orientation:%ld:%f\n", temps, _consigne.x_mm, temps, _consigne.y_mm, temps, _consigne.angle_radian/M_PI*180);
|
|
printf(">Position:%f:%f:%ld|xy\n>Consigne_Position:%f:%f:%ld|xy\n", _position.x_mm, _position.y_mm, temps, _consigne.x_mm, _consigne.y_mm, temps);
|
|
printf(">V_A:%ld:%f\n>V_B:%ld:%f\n>V_C:%ld:%f\n", temps, QEI_get_mm(QEI_A_NAME), temps, QEI_get_mm(QEI_B_NAME), temps, QEI_get_mm(QEI_C_NAME));
|
|
printf(">V_consigne_A:%ld:%f\n>V_consigne_B:%ld:%f\n>V_consigne_C:%ld:%f\n", temps, AsserMoteur_getConsigne_mm_s(MOTEUR_A), temps, AsserMoteur_getConsigne_mm_s(MOTEUR_B), temps, AsserMoteur_getConsigne_mm_s(MOTEUR_C));
|
|
}
|
|
|
|
}
|
|
|
|
int test_aller_retour(){
|
|
int lettre, _step_ms = 1, temps_ms=0, _step_ms_gyro=2;
|
|
const double corr_angle = 1.145;
|
|
Trajet_init();
|
|
struct trajectoire_t trajectoire;
|
|
printf("Choix trajectoire :\n");
|
|
printf("B - Bezier\n");
|
|
printf("C - Circulaire\n");
|
|
printf("D - Droite\n");
|
|
printf("E - Avance et tourne (ok)\n");
|
|
printf("F - Avance et tourne (Nok)\n");
|
|
printf("G - Avance (Calibre angle)\n");
|
|
printf("R - Rotation pure\n");
|
|
do{
|
|
lettre = getchar_timeout_us(TEST_TIMEOUT_US);
|
|
stdio_flush();
|
|
}while(lettre == PICO_ERROR_TIMEOUT);
|
|
switch(lettre){
|
|
case 'b':
|
|
case 'B':
|
|
Trajet_config(TRAJECT_CONFIG_AVANCE_DROIT);
|
|
Trajectoire_bezier(&trajectoire, 0, 0, -200., 450, 250, 450, 0, 0, 0, 0);
|
|
printf("Trajectoire de Bézier\n");
|
|
break;
|
|
|
|
case 'c':
|
|
case 'C':
|
|
Trajet_config(TRAJECT_CONFIG_AVANCE_DROIT);
|
|
Trajectoire_circulaire(&trajectoire, 0, 250, -90, 90, 250, 0, 0);
|
|
printf("Trajectoire circulaire\n");
|
|
break;
|
|
|
|
case 'd':
|
|
case 'D':
|
|
Trajectoire_droite(&trajectoire, 0, 0, 0, 700, 0, 0);
|
|
Trajet_config(TRAJECT_CONFIG_AVANCE_DROIT);
|
|
printf("Trajectoire droite\n");
|
|
break;
|
|
|
|
case 'e':
|
|
case 'E':
|
|
Trajet_config(TRAJECT_CONFIG_AVANCE_ET_TOURNE);
|
|
Trajectoire_droite(&trajectoire, 0, 0, 0, 1500, 0, M_PI);
|
|
printf("Trajectoire droite avec rotation (OK)\n");
|
|
break;
|
|
|
|
case 'f':
|
|
case 'F':
|
|
Trajet_config(TRAJECT_CONFIG_AVANCE_DROIT);
|
|
Trajectoire_droite(&trajectoire, 0, 0, 0, 700, 0, M_PI);
|
|
printf("Trajectoire droite avec rotation (Nok)\n");
|
|
break;
|
|
|
|
case 'g':
|
|
case 'G':
|
|
Trajet_config(TRAJECT_CONFIG_AVANCE_ET_TOURNE);
|
|
Trajectoire_droite(&trajectoire, 0, 0,
|
|
2750 * cos((60+90-corr_angle) * (M_PI / 180.)), 2750 * sin((60+90-corr_angle) * (M_PI / 180.)),
|
|
0, 0);
|
|
printf("Trajectoire droite pour calibration angle de départ\n");
|
|
break;
|
|
|
|
case 'r':
|
|
case 'R':
|
|
Trajectoire_rotation(&trajectoire, 0, 0, 0, 700);
|
|
trajectoire.orientation_debut_rad = 0;
|
|
trajectoire.orientation_fin_rad = M_PI;
|
|
printf("Trajectoire droite avec rotation\n");
|
|
break;
|
|
|
|
default: return 0;
|
|
}
|
|
|
|
printf("Init gyroscope\n");
|
|
Gyro_Init();
|
|
//printf("C'est parti !\n");
|
|
stdio_flush();
|
|
|
|
set_position_avec_gyroscope(1);
|
|
|
|
Trajet_debut_trajectoire(trajectoire);
|
|
multicore_launch_core1(test_trajectoire_teleplot);
|
|
temps_ms = Temps_get_temps_ms();
|
|
do{
|
|
// Routines à 1 ms
|
|
while(temps_ms == Temps_get_temps_ms());
|
|
temps_ms = Temps_get_temps_ms();
|
|
QEI_update();
|
|
Localisation_gestion();
|
|
|
|
// Routine à 2 ms
|
|
if(temps_ms % _step_ms_gyro == 0){
|
|
Gyro_Read(_step_ms_gyro);
|
|
}
|
|
|
|
if(Trajet_avance(_step_ms/1000.) == TRAJET_TERMINE){
|
|
Trajectoire_inverse(&trajectoire);
|
|
Trajet_debut_trajectoire(trajectoire);
|
|
}else{
|
|
AsserMoteur_Gestion(_step_ms);
|
|
}
|
|
lettre = getchar_timeout_us(0);
|
|
//lettre = PICO_ERROR_TIMEOUT;
|
|
}while((lettre == PICO_ERROR_TIMEOUT) || (lettre == 0));
|
|
printf("Lettre : %d; %c\n", lettre, lettre);
|
|
|
|
Moteur_Stop();
|
|
multicore_reset_core1();
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int test_trajectoire(){
|
|
int lettre, _step_ms = 1, temps_ms=0;
|
|
Trajet_init();
|
|
struct trajectoire_t trajectoire;
|
|
printf("Choix trajectoire :\n");
|
|
printf("B - Bezier\n");
|
|
printf("C - Circulaire\n");
|
|
printf("D - Droite\n");
|
|
do{
|
|
lettre = getchar_timeout_us(TEST_TIMEOUT_US);
|
|
stdio_flush();
|
|
}while(lettre == PICO_ERROR_TIMEOUT);
|
|
switch(lettre){
|
|
case 'b':
|
|
case 'B':
|
|
Trajectoire_bezier(&trajectoire, 0, 0, -200., 450, 250, 450, 0, 0, 0, 0);
|
|
printf("Trajectoire Bezier\n");
|
|
break;
|
|
|
|
case 'c':
|
|
case 'C':
|
|
Trajectoire_circulaire(&trajectoire, 0, 250, -90, 90, 250, 0, 0);
|
|
printf("Trajectoire circulaire\n");
|
|
break;
|
|
|
|
case 'd':
|
|
case 'D':
|
|
Trajectoire_droite(&trajectoire, 0, 0, 0, 700, 0, 0);
|
|
printf("Trajectoire droite\n");
|
|
break;
|
|
|
|
default: return 0;
|
|
}
|
|
|
|
sleep_ms(3000);
|
|
|
|
Trajet_debut_trajectoire(trajectoire);
|
|
multicore_launch_core1(test_trajectoire_teleplot);
|
|
do{
|
|
// Routines à 1 ms
|
|
QEI_update();
|
|
Localisation_gestion();
|
|
|
|
if(Trajet_avance(_step_ms/1000.) == TRAJET_TERMINE){
|
|
Moteur_SetVitesse(MOTEUR_A, 0);
|
|
Moteur_SetVitesse(MOTEUR_B, 0);
|
|
Moteur_SetVitesse(MOTEUR_C, 0);
|
|
}else{
|
|
AsserMoteur_Gestion(_step_ms);
|
|
}
|
|
sleep_ms(_step_ms);
|
|
temps_ms += _step_ms;
|
|
lettre = getchar_timeout_us(0);
|
|
lettre = PICO_ERROR_TIMEOUT;
|
|
}while(lettre == PICO_ERROR_TIMEOUT);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
/// @brief Avance droit 100 mm/s en tournant sur lui-même (1rad/s)
|
|
/// @param m_gyro : 1 pour utiliser le gyroscope, 0 sans
|
|
/// @return
|
|
int test_asser_position_avance_et_tourne(int m_gyro){
|
|
int lettre, _step_ms = 1, _step_ms_gyro = 2, step_gyro=2;
|
|
uint32_t temps_ms = 0, temps_ms_init = 0, temps_ms_old;
|
|
struct position_t position_consigne;
|
|
|
|
position_consigne.angle_radian = 0;
|
|
position_consigne.x_mm = 0;
|
|
position_consigne.y_mm = 0;
|
|
|
|
printf("Le robot avance à 100 mm/s\n");
|
|
if(m_gyro){
|
|
printf("Init gyroscope\n");
|
|
Gyro_Init();
|
|
printf("C'est parti !\n");
|
|
}
|
|
stdio_flush();
|
|
|
|
set_position_avec_gyroscope(m_gyro);
|
|
temps_ms = Temps_get_temps_ms();
|
|
temps_ms_old = temps_ms;
|
|
temps_ms_init = temps_ms;
|
|
|
|
multicore_launch_core1(affiche_localisation);
|
|
do{
|
|
while(temps_ms == Temps_get_temps_ms());
|
|
temps_ms = Temps_get_temps_ms();
|
|
temps_ms_old = temps_ms;
|
|
|
|
QEI_update();
|
|
if(temps_ms % _step_ms_gyro == 0){
|
|
Gyro_Read(_step_ms_gyro);
|
|
}
|
|
Localisation_gestion();
|
|
AsserMoteur_Gestion(_step_ms);
|
|
|
|
position_consigne.angle_radian = (double) (temps_ms - temps_ms_init) /1000.;
|
|
position_consigne.y_mm = (double) (temps_ms - temps_ms_init) * 100. / 1000.;
|
|
|
|
Asser_Position(position_consigne);
|
|
|
|
lettre = getchar_timeout_us(0);
|
|
}while(lettre == PICO_ERROR_TIMEOUT || lettre == 0);
|
|
|
|
printf("lettre : %c, %d\n", lettre, lettre);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int test_asser_position_avance(){
|
|
int lettre, _step_ms = 1, temps_ms=0;
|
|
struct position_t position;
|
|
|
|
position.angle_radian = 0;
|
|
position.x_mm = 0;
|
|
position.y_mm = 0;
|
|
|
|
printf("Le robot avance à 100 mm/s\n");
|
|
do{
|
|
QEI_update();
|
|
Localisation_gestion();
|
|
AsserMoteur_Gestion(_step_ms);
|
|
|
|
if(temps_ms < 5000){
|
|
position.y_mm = (double) temps_ms * 100. / 1000.;
|
|
}else if(temps_ms < 10000){
|
|
position.y_mm = 1000 - (double) temps_ms * 100. / 1000.;
|
|
}else{
|
|
temps_ms = 0;
|
|
}
|
|
|
|
Asser_Position(position);
|
|
temps_ms += _step_ms;
|
|
sleep_ms(_step_ms);
|
|
|
|
lettre = getchar_timeout_us(0);
|
|
}while(lettre == PICO_ERROR_TIMEOUT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int test_cde_vitesse(){
|
|
printf("A - Commande en vitesse - rectangle\n");
|
|
printf("B - Commande en vitesse - cercle\n");
|
|
printf("C - Commande en vitesse - rotation pure\n");
|
|
printf("D - Commande en vitesse - rotation par rapport à un point (contacteur longer A)\n");
|
|
printf("E - Commande en vitesse - rotation par rapport à un point (contacteur longer C)\n");
|
|
|
|
int lettre;
|
|
do{
|
|
lettre = getchar_timeout_us(0);
|
|
stdio_flush();
|
|
|
|
}while(lettre == PICO_ERROR_TIMEOUT || lettre == '\0');
|
|
|
|
switch(lettre){
|
|
case 'a':
|
|
case 'A':
|
|
while(test_cde_vitesse_rectangle());
|
|
break;
|
|
|
|
case 'b':
|
|
case 'B':
|
|
while(test_cde_vitesse_cercle());
|
|
break;
|
|
|
|
case 'c':
|
|
case 'C':
|
|
while(test_cde_vitesse_rotation());
|
|
break;
|
|
|
|
case 'd':
|
|
case 'D':
|
|
while(test_cde_rotation_ref_robot(RAYON_ROBOT, 0));
|
|
break;
|
|
|
|
case 'e':
|
|
case 'E':
|
|
while(test_cde_rotation_ref_robot(RAYON_ROBOT/2, -RAYON_ROBOT* RACINE_DE_3/2));
|
|
break;
|
|
}
|
|
}
|
|
|
|
int test_cde_vitesse_rotation(){
|
|
int lettre, _step_ms = 1;
|
|
double vitesse =90.0/2 * 3.14159 /180.0;
|
|
printf("Rotation du robot sur lui-même en 8 secondes\nVitesse : %f rad/s\n", vitesse);
|
|
|
|
commande_vitesse(0, 0, vitesse);
|
|
do{
|
|
QEI_update();
|
|
AsserMoteur_Gestion(_step_ms);
|
|
sleep_ms(_step_ms);
|
|
lettre = getchar_timeout_us(0);
|
|
}while(lettre == PICO_ERROR_TIMEOUT);
|
|
Moteur_Stop();
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
int test_cde_rotation_ref_robot(double centre_x_mm, double centre_y_mm){
|
|
int lettre, _step_ms = 1;
|
|
double vitesse =90.0/4 * 3.14159 /180.0;
|
|
printf("Rotation du robot par rapport au point (Rayon, O)\nVitesse : %f rad/s\n", vitesse);
|
|
|
|
commande_rotation(vitesse, centre_x_mm, centre_y_mm);
|
|
do{
|
|
QEI_update();
|
|
AsserMoteur_Gestion(_step_ms);
|
|
sleep_ms(_step_ms);
|
|
lettre = getchar_timeout_us(0);
|
|
}while(lettre == PICO_ERROR_TIMEOUT);
|
|
Moteur_Stop();
|
|
|
|
return 0;
|
|
}
|
|
|
|
int test_cde_vitesse_rectangle(){
|
|
int lettre, _step_ms = 1, temps_ms=0;
|
|
|
|
printf("déplacement en rectangle du robot : 500x200 mm, 100 mm/s\n");
|
|
do{
|
|
QEI_update();
|
|
AsserMoteur_Gestion(_step_ms);
|
|
|
|
if(temps_ms < 5000){
|
|
commande_vitesse(0, 100, 0);
|
|
}else if(temps_ms < 7000){
|
|
commande_vitesse(-100, 0, 0);
|
|
}else if(temps_ms < 12000){
|
|
commande_vitesse(0, -100, 0);
|
|
}else if(temps_ms < 14000){
|
|
commande_vitesse(100, 0, 0);
|
|
}else{
|
|
temps_ms = 0;
|
|
}
|
|
|
|
sleep_ms(_step_ms);
|
|
temps_ms += _step_ms;
|
|
lettre = getchar_timeout_us(0);
|
|
}while(lettre == PICO_ERROR_TIMEOUT);
|
|
Moteur_Stop();
|
|
|
|
return 0;
|
|
}
|
|
|
|
int test_cde_vitesse_cercle(){
|
|
int lettre, _step_ms = 1, temps_ms=0;
|
|
|
|
printf("déplacement en cercle du robot : 100 mm/s\n");
|
|
do{
|
|
QEI_update();
|
|
AsserMoteur_Gestion(_step_ms);
|
|
commande_vitesse(cos((double)temps_ms / 1000.) * 200.0, sin((double)temps_ms /1000.) * 200.0, 0);
|
|
temps_ms += _step_ms;
|
|
sleep_ms(_step_ms);
|
|
|
|
|
|
lettre = getchar_timeout_us(0);
|
|
}while(lettre == PICO_ERROR_TIMEOUT);
|
|
Moteur_Stop();
|
|
|
|
return 0;
|
|
}
|
|
|
|
int test_avance(void){
|
|
int lettre;
|
|
int _step_ms = 1;
|
|
AsserMoteur_setConsigne_mm_s(MOTEUR_A, -100);
|
|
AsserMoteur_setConsigne_mm_s(MOTEUR_B, 100);
|
|
AsserMoteur_setConsigne_mm_s(MOTEUR_C, 0);
|
|
|
|
do{
|
|
QEI_update();
|
|
AsserMoteur_Gestion(_step_ms);
|
|
sleep_ms(_step_ms);
|
|
lettre = getchar_timeout_us(0);
|
|
|
|
}while(lettre == PICO_ERROR_TIMEOUT);
|
|
Moteur_SetVitesse(MOTEUR_A, 0);
|
|
Moteur_SetVitesse(MOTEUR_B, 0);
|
|
Moteur_SetVitesse(MOTEUR_C, 0);
|
|
return 0;
|
|
}
|
|
|
|
void affiche_localisation(){
|
|
struct position_t position;
|
|
while(1){
|
|
position = Localisation_get();
|
|
printf("X: %f, Y: %f, angle: %f\n", position.x_mm, position.y_mm, position.angle_radian *180. / 3.141592654);
|
|
|
|
}
|
|
}
|
|
|
|
void test_asser_moteur_printf(){
|
|
int _step_ms = 1;
|
|
while(1){
|
|
printf("Vitesse A : %.0f, vitesse B : %.0f, vitesse C : %.0f\n", AsserMoteur_getVitesse_mm_s(MOTEUR_A, _step_ms),
|
|
AsserMoteur_getVitesse_mm_s(MOTEUR_B, _step_ms), AsserMoteur_getVitesse_mm_s(MOTEUR_C, _step_ms));
|
|
//sleep_ms(5);
|
|
}
|
|
}
|
|
|
|
int test_asser_moteur(){
|
|
int lettre;
|
|
int _step_ms = 1;
|
|
printf("Asservissement des moteurs :\nAppuyez sur une touche pour quitter\n");
|
|
AsserMoteur_setConsigne_mm_s(MOTEUR_A, 100);
|
|
AsserMoteur_setConsigne_mm_s(MOTEUR_B, 100);
|
|
AsserMoteur_setConsigne_mm_s(MOTEUR_C, 100);
|
|
multicore_launch_core1(test_asser_moteur_printf);
|
|
do{
|
|
QEI_update();
|
|
AsserMoteur_Gestion(_step_ms);
|
|
sleep_ms(_step_ms);
|
|
//printf("Vitesse A : %d, codeur B : %d, codeur C : %d\n", QEI_get(QEI_A_NAME), QEI_get(QEI_B_NAME), QEI_get(QEI_C_NAME));
|
|
//printf("Vitesse A : %.0f, vitesse B : %.0f, vitesse C : %.0f\n", AsserMoteur_getVitesse_mm_s(MOTEUR_A, _step_ms),
|
|
// AsserMoteur_getVitesse_mm_s(MOTEUR_B, _step_ms), AsserMoteur_getVitesse_mm_s(MOTEUR_C, _step_ms));
|
|
lettre = getchar_timeout_us(0);
|
|
}while(lettre == PICO_ERROR_TIMEOUT);
|
|
Moteur_SetVitesse(MOTEUR_A, 0);
|
|
Moteur_SetVitesse(MOTEUR_B, 0);
|
|
Moteur_SetVitesse(MOTEUR_C, 0);
|
|
multicore_reset_core1();
|
|
return 0;
|
|
}
|
|
|
|
int test_QIE(){
|
|
int lettre;
|
|
printf("Affichage des QEI :\nAppuyez sur une touche pour quitter\n");
|
|
do{
|
|
QEI_update();
|
|
printf("Codeur A : %d (%3.2f mm), codeur B : %d (%3.2f mm), codeur C : %d (%3.2f mm)\n",
|
|
QEI_get(QEI_A_NAME), QEI_get_mm(QEI_A_NAME),
|
|
QEI_get(QEI_B_NAME), QEI_get_mm(QEI_B_NAME),
|
|
QEI_get(QEI_C_NAME), QEI_get_mm(QEI_C_NAME));
|
|
sleep_ms(100);
|
|
|
|
lettre = getchar_timeout_us(0);
|
|
}while(lettre == PICO_ERROR_TIMEOUT);
|
|
return 0;
|
|
|
|
}
|
|
|
|
int test_QIE_mm(){
|
|
int lettre;
|
|
printf("Affichage des QEI :\nAppuyez sur une touche pour quitter\n");
|
|
double a_mm=0, b_mm=0, c_mm=0;
|
|
do{
|
|
QEI_update();
|
|
a_mm += QEI_get_mm(QEI_A_NAME);
|
|
b_mm += QEI_get_mm(QEI_B_NAME);
|
|
c_mm += QEI_get_mm(QEI_C_NAME);
|
|
printf("Codeur A : %3.2f mm, codeur B : %3.2f mm, codeur C : %3.2f mm\n", a_mm, b_mm, c_mm);
|
|
sleep_ms(100);
|
|
|
|
lettre = getchar_timeout_us(0);
|
|
}while(lettre == PICO_ERROR_TIMEOUT);
|
|
return 0;
|
|
|
|
}
|
|
|
|
int test_localisation(){
|
|
int lettre;
|
|
struct position_t position;
|
|
uint32_t temps_ms;
|
|
uint32_t _step_ms_gyro = 2, _step_ms=1;
|
|
uint32_t m_gyro = 0;
|
|
|
|
printf("A - Sans gyroscope\n");
|
|
printf("B - Avec Gyroscope\n");
|
|
do{
|
|
lettre = getchar_timeout_us(TEST_TIMEOUT_US);
|
|
stdio_flush();
|
|
}while(lettre == PICO_ERROR_TIMEOUT);
|
|
|
|
switch(lettre){
|
|
case 'A':
|
|
case 'a':
|
|
set_position_avec_gyroscope(0);
|
|
printf("Sans gyroscope\n");
|
|
break;
|
|
case 'B':
|
|
case 'b':
|
|
set_position_avec_gyroscope(1);
|
|
printf("Avec gyroscope, initialisation...\n");
|
|
m_gyro=1;
|
|
Gyro_Init();
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
temps_ms = Temps_get_temps_ms();
|
|
|
|
multicore_launch_core1(affiche_localisation);
|
|
|
|
|
|
|
|
printf("Affichage de la position du robot.\nAppuyez sur une touche pour quitter\n");
|
|
do{
|
|
while(temps_ms == Temps_get_temps_ms());
|
|
QEI_update();
|
|
if(m_gyro){
|
|
if(temps_ms % _step_ms_gyro == 0){
|
|
Gyro_Read(_step_ms_gyro);
|
|
}
|
|
}
|
|
Localisation_gestion();
|
|
position = Localisation_get();
|
|
|
|
lettre = getchar_timeout_us(0);
|
|
|
|
temps_ms += _step_ms;
|
|
}while(lettre == PICO_ERROR_TIMEOUT || lettre == 0);
|
|
|
|
multicore_reset_core1();
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
int test_moteurs(){
|
|
int lettre_moteur;
|
|
|
|
printf("Indiquez le moteurs à tester (A, B ou C):\n");
|
|
do{
|
|
lettre_moteur = getchar_timeout_us(TEST_TIMEOUT_US);
|
|
stdio_flush();
|
|
}while(lettre_moteur == PICO_ERROR_TIMEOUT);
|
|
printf("Moteur choisi : %c %d %x\n", lettre_moteur, lettre_moteur, lettre_moteur);
|
|
|
|
switch (lettre_moteur)
|
|
{
|
|
case 'A':
|
|
case 'a':
|
|
while(test_vitesse_moteur(MOTEUR_A));
|
|
break;
|
|
|
|
case 'B':
|
|
case 'b':
|
|
while(test_vitesse_moteur(MOTEUR_B));
|
|
break;
|
|
|
|
case 'C':
|
|
case 'c':
|
|
while(test_vitesse_moteur(MOTEUR_C));
|
|
break;
|
|
|
|
case 'Q':
|
|
case 'q':
|
|
return 0;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int test_vitesse_moteur(enum t_moteur moteur){
|
|
printf("Vitesse souhaitée :\n0 - 0%%\n1 - 10%%\n2 - 20%%\n...\n9 - 90%%\nA - 100%%\n");
|
|
|
|
int vitesse_moteur;
|
|
do{
|
|
vitesse_moteur = getchar_timeout_us(0);
|
|
stdio_flush();
|
|
|
|
}while(vitesse_moteur == PICO_ERROR_TIMEOUT);
|
|
|
|
switch (vitesse_moteur)
|
|
{
|
|
case '0':
|
|
case '1':
|
|
case '2':
|
|
case '3':
|
|
case '4':
|
|
case '5':
|
|
case '6':
|
|
case '7':
|
|
case '8':
|
|
case '9':
|
|
printf("Vitesse choisie : %c0%%\n", vitesse_moteur);
|
|
Moteur_SetVitesse(moteur, (vitesse_moteur - '0') * 32767.0 / 10.);
|
|
break;
|
|
|
|
case 'A':
|
|
case 'a':
|
|
printf("Vitesse choisie : 100%%\n");
|
|
Moteur_SetVitesse(moteur, (int16_t) 32766.0);
|
|
break;
|
|
|
|
case 'b':
|
|
case 'B':
|
|
printf("Vitesse choisie : -50%%\n");
|
|
Moteur_SetVitesse(moteur, (int16_t) -32766.0/2);
|
|
break;
|
|
|
|
case 'q':
|
|
case 'Q':
|
|
return 0;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
|
|
int test_geometrie(){
|
|
double angle = 270, angle_min, angle_max;
|
|
printf("Normalise %f° : %f°\n", angle, Geometrie_get_angle_normalisee(angle*DEGRE_EN_RADIAN)/DEGRE_EN_RADIAN);
|
|
angle = 180;
|
|
printf("Normalise %f° : %f°\n", angle, Geometrie_get_angle_normalisee(angle*DEGRE_EN_RADIAN)/DEGRE_EN_RADIAN);
|
|
angle = 181;
|
|
printf("Normalise %f° : %f°\n", angle, Geometrie_get_angle_normalisee(angle*DEGRE_EN_RADIAN)/DEGRE_EN_RADIAN);
|
|
angle = 179;
|
|
printf("Normalise %f° : %f°\n", angle, Geometrie_get_angle_normalisee(angle*DEGRE_EN_RADIAN)/DEGRE_EN_RADIAN);
|
|
|
|
|
|
angle_min = -100;
|
|
angle_max = -80;
|
|
angle = -90;
|
|
printf("Anglee %f° compris entre %f° et %f° : %d\n", angle, angle_min, angle_max,
|
|
Geometrie_compare_angle(angle*DEGRE_EN_RADIAN, angle_min*DEGRE_EN_RADIAN, angle_max*DEGRE_EN_RADIAN));
|
|
angle = 90;
|
|
printf("Anglee %f° compris entre %f° et %f° : %d\n", angle, angle_max, angle_min,
|
|
Geometrie_compare_angle(angle*DEGRE_EN_RADIAN, angle_min*DEGRE_EN_RADIAN, angle_max*DEGRE_EN_RADIAN));
|
|
angle = -120;
|
|
printf("Anglee %f° compris entre %f° et %f° : %d\n", angle, angle_max, angle_min,
|
|
Geometrie_compare_angle(angle*DEGRE_EN_RADIAN, angle_min*DEGRE_EN_RADIAN, angle_max*DEGRE_EN_RADIAN));
|
|
|
|
|
|
|
|
angle_min = 178;
|
|
angle_max = 182;
|
|
angle = 179;
|
|
printf("Anglee %f° compris entre %f° et %f° : %d\n", angle, angle_min, angle_max,
|
|
Geometrie_compare_angle(angle*DEGRE_EN_RADIAN, angle_min*DEGRE_EN_RADIAN, angle_max*DEGRE_EN_RADIAN));
|
|
angle = 177;
|
|
printf("Anglee %f° compris entre %f° et %f° : %d\n", angle, angle_max, angle_min,
|
|
Geometrie_compare_angle(angle*DEGRE_EN_RADIAN, angle_min*DEGRE_EN_RADIAN, angle_max*DEGRE_EN_RADIAN));
|
|
angle = 183;
|
|
printf("Anglee %f° compris entre %f° et %f° : %d\n", angle, angle_max, angle_min,
|
|
Geometrie_compare_angle(angle*DEGRE_EN_RADIAN, angle_min*DEGRE_EN_RADIAN, angle_max*DEGRE_EN_RADIAN));
|
|
|
|
return 0;
|
|
} |