RPiPico-Holonome2023/gyro_ADXRS453.c

245 lines
7.4 KiB
C

#include "gyro_ADXRS453.h"
#include "spi_nb.h"
#include <stdio.h>
#ifdef GYRO_ADXRS453
#define NB_MAX_CHAR_GYRO 4
struct {
unsigned short SQ:3;
unsigned short ST:2;
unsigned short P0:1;
unsigned short P1:1;
unsigned short PLL:1;
unsigned short Q:1;
unsigned short NVM:1;
unsigned short POR:1;
unsigned short PWR:1;
unsigned short CST:1;
unsigned short CHK:1;
int16_t rateData;
} Gyro_SensorData;
void Gyro_traitementDonnees(unsigned char * tamponRecu);
unsigned char pariteOctet(unsigned char octet);
int gyro_spi_wr_32bits(uint16_t *transmit_buffer, uint8_t *recieve_buffer){
int nb_recu;
cs_select();
if(spi_nb_write_data(spi0, (uint16_t*) transmit_buffer, 4) == SPI_ERR_TRANSMIT_FIFO_FULL){
puts("gyro_spi_wr_32bits: SPI_ERR_TRANSMIT_FIFO_FULL");
}else{
while(spi_nb_busy(spi0));
nb_recu = spi_nb_read_data_8bits(spi0, recieve_buffer);
}
if(nb_recu != 4){
puts("gyro_spi_wr_32bits: nb_recu incohérent");
}
cs_deselect();
}
void affiche_tampon_32bits(uint8_t *tampon){
uint32_t valeur;
valeur = (tampon[0] << 24) + (tampon[1] << 16) + (tampon[2]<<8) + tampon[3];
printf("Tampon: %#010x\n", valeur);
}
int gyro_get_sensor_data(uint16_t tampon_envoi[], uint8_t tampon_reception[]){
tampon_envoi[0] = 0x30;
tampon_envoi[1] = 0x00;
tampon_envoi[2] = 0x00;
tampon_envoi[3] = 0x01;
gyro_spi_wr_32bits(tampon_envoi, tampon_reception);
Gyro_traitementDonnees(tampon_reception);
if(Gyro_SensorData.SQ != 0x4){
printf("Gyro Failed - SQ bits (%#3x)!= 0x4\n", Gyro_SensorData.SQ);
affiche_tampon_32bits(tampon_reception);
return 1;
}
if(Gyro_SensorData.ST != 0x1){
printf("Gyro Failed - Status (%#3x)!= 0x1\n", Gyro_SensorData.ST);
affiche_tampon_32bits(tampon_reception);
return 1;
}
return 0;
}
int gyro_init_check(){
// Renvoi 0 si l'initialisation s'est bien passée
// Renvoi 1 si le gyroscope n'a pas répondu
uint16_t tampon_envoi[5]={0, 0, 0, 0, 0};
uint8_t tampon_reception[5]="\0\0\0\0\0";
// On suit les instructions de la page 20 de la fiche technique
sleep_ms(100); // init du gyro - On ignore la réponse
//printf("T=100ms\n");
tampon_envoi[0] = 0x30;
tampon_envoi[1] = 0x00;
tampon_envoi[2] = 0x00;
tampon_envoi[3] = 0x02;
gyro_spi_wr_32bits(tampon_envoi, tampon_reception);
Gyro_traitementDonnees(tampon_reception);
affiche_tampon_32bits(tampon_reception);
sleep_ms(50); // t=150ms - On ignore, les données ne sont pas actualisées
//printf("T=150ms\n");
tampon_envoi[0] = 0x30;
tampon_envoi[1] = 0x00;
tampon_envoi[2] = 0x00;
tampon_envoi[3] = 0x01;
gyro_spi_wr_32bits(tampon_envoi, tampon_reception);
Gyro_traitementDonnees(tampon_reception);
if(Gyro_SensorData.SQ != 0b100){
printf("Gyro_Init - SQ bits (%#01x)!= 0x4", Gyro_SensorData.SQ);
return 1;
}
affiche_tampon_32bits(tampon_reception);
sleep_ms(50); // t=200ms - En cours d'autotest
//printf("T=200ms\n");
tampon_envoi[0] = 0x30;
tampon_envoi[1] = 0x00;
tampon_envoi[2] = 0x00;
tampon_envoi[3] = 0x01;
gyro_spi_wr_32bits(tampon_envoi, tampon_reception);
Gyro_traitementDonnees(tampon_reception);
if(Gyro_SensorData.SQ != 0b100){
printf("Gyro_Init - SQ bits (%#01x)!= 0x4", Gyro_SensorData.SQ);
return 1;
}
affiche_tampon_32bits(tampon_reception);
sleep_us(1); // t=200ms + TD - résultats de 200ms + TD, en cours d'autotest.
//printf("T=200ms+TD\n");
tampon_envoi[0] = 0x30;
tampon_envoi[1] = 0x00;
tampon_envoi[2] = 0x00;
tampon_envoi[3] = 0x01;
gyro_spi_wr_32bits(tampon_envoi, tampon_reception);
Gyro_traitementDonnees(tampon_reception);
if(Gyro_SensorData.SQ != 0b100){
printf("Gyro_Init - SQ bits (%#01x)!= 0x4", Gyro_SensorData.SQ);
return 1;
}
//affiche_tampon_32bits(tampon_reception);
sleep_us(1); // t=200ms + 2TD - doit être nominal
//printf("T=200ms+2TD\n");
tampon_envoi[0] = 0x00;
tampon_envoi[1] = 0x00;
tampon_envoi[2] = 0x00;
tampon_envoi[3] = 0x00;
if(gyro_get_sensor_data(tampon_envoi, tampon_reception)){
return 1;
}
return 0;
}
int gyro_config(){
return 0;
}
void gyro_get_vitesse_brute(struct t_angle_gyro* angle_gyro, struct t_angle_gyro* angle_gyro_moy){
uint16_t tampon_envoi[5]={0, 0, 0, 0, 0};
uint8_t tampon_reception[5]="\0\0\0\0\0";
int16_t rot_z;
sleep_us(1); // A supprimer plus tard
if(gyro_get_sensor_data(tampon_envoi, tampon_reception)){
return;
}
rot_z = -Gyro_SensorData.rateData;
if(angle_gyro_moy == NULL){
angle_gyro->rot_x = 0;
angle_gyro->rot_y = 0;
angle_gyro->rot_z = rot_z * 32;
}else{
angle_gyro->rot_x = 0;
angle_gyro->rot_y = 0;
angle_gyro->rot_z = (int32_t) rot_z * 32 - angle_gyro_moy->rot_z;
}
}
void gyro_get_vitesse_normalisee(struct t_angle_gyro* _vitesse_angulaire,
struct t_angle_gyro_double * _vitesse_gyro){
_vitesse_gyro->rot_x = (double)_vitesse_angulaire->rot_x * 0.0125 / 32.0;
_vitesse_gyro->rot_y = (double)_vitesse_angulaire->rot_y * 0.0125 / 32.0;
_vitesse_gyro->rot_z = (double)_vitesse_angulaire->rot_z * 0.0125 / 32.0 * 360. / 357.; // Gain mesuré
}
inline unsigned char Gyro_commande_SensorData(unsigned char autotest){
// On met SQ2 à 1 afin de différencier facilement une erreur et des données
uint8_t tamponGyroscopeEnvoi[4];
tamponGyroscopeEnvoi[0] = 0x30;
tamponGyroscopeEnvoi[1] = 0x00;
tamponGyroscopeEnvoi[2] = 0x00;
if (autotest){
tamponGyroscopeEnvoi[3] = 0x03;
}else{
tamponGyroscopeEnvoi[3] = 0x01;
}
// La parité, dans ce cas est triviale, autant prévoir tous les cas
//Gyro_commande_PariteData(tamponGyroscopeEnvoi);
//return SPI_envData(tamponGyroscopeEnvoi);
}
void Gyro_commande_PariteData(unsigned char* tampon){
unsigned char parite=0,i;
// Obtention de la parité actuelle
for(i=0 ; i< NB_MAX_CHAR_GYRO ; i++){
parite ^= pariteOctet(tampon[i]);
}
// On veut une parité impaire
parite ^= 0x01;
// On insere ce bit dans le message, au bon endroit
tampon[NB_MAX_CHAR_GYRO-1] = tampon[NB_MAX_CHAR_GYRO-1] | parite;
}
unsigned char pariteOctet(unsigned char octet){
unsigned char parite=0,i;
for (i=0 ; i<8 ; i++){
parite ^= octet & 0x01;
octet = octet >> 1;
}
return parite;
}
void Gyro_traitementDonnees(uint8_t * tamponRecu){
Gyro_SensorData.SQ = (tamponRecu[0]>>5) & 0x07;
Gyro_SensorData.P0 = (tamponRecu[0]>>4) & 0x01;
Gyro_SensorData.ST = (tamponRecu[0]>>2) & 0x03;
Gyro_SensorData.rateData = (int)
( (0xC000 &((unsigned int) (tamponRecu[0] & 0x03)<<14)) |
( 0x3FC0 & ((unsigned int) tamponRecu[1] << 6)) |
( 0x003F & (unsigned int) ( tamponRecu[2] >> 2)));
Gyro_SensorData.PLL = (tamponRecu[3] & 0x80) >> 7;
Gyro_SensorData.Q = (tamponRecu[3] & 0x40) >> 6;
Gyro_SensorData.NVM = (tamponRecu[3] & 0x20) >> 5;
Gyro_SensorData.POR = (tamponRecu[3] & 0x10) >> 4;
Gyro_SensorData.PWR = (tamponRecu[3] & 0x08) >> 3;
Gyro_SensorData.CST = (tamponRecu[3] & 0x04) >> 2;
Gyro_SensorData.CHK = (tamponRecu[3] & 0x02) >> 1;
Gyro_SensorData.P1 = (tamponRecu[3] & 0x01);
}
#endif