291 lines
8.2 KiB
C
291 lines
8.2 KiB
C
|
#include "gyro_ADXRS473.h"
|
||
|
#include "spi_nb.h"
|
||
|
#include <stdio.h>
|
||
|
|
||
|
#define NB_MAX_CHAR_GYRO 4
|
||
|
|
||
|
struct {
|
||
|
unsigned short SQ:3;
|
||
|
unsigned short ST:2;
|
||
|
unsigned short P0:1;
|
||
|
unsigned short P1:1;
|
||
|
unsigned short PLL:1;
|
||
|
unsigned short Q:1;
|
||
|
unsigned short NVM:1;
|
||
|
unsigned short POR:1;
|
||
|
unsigned short PWR:1;
|
||
|
unsigned short CST:1;
|
||
|
unsigned short CHK:1;
|
||
|
signed int rateData;
|
||
|
} Gyro_SensorData;
|
||
|
|
||
|
void Gyro_traitementDonnees(unsigned char * tamponRecu);
|
||
|
unsigned char pariteOctet(unsigned char octet);
|
||
|
|
||
|
int gyro_read_register_blocking(uint8_t registrer, uint8_t *tampon, uint8_t nb_a_lire){
|
||
|
uint8_t tampon_envoi[4]="\0\0\0\0";
|
||
|
int nb_recu;
|
||
|
tampon_envoi[0] = registrer;
|
||
|
|
||
|
// Envoie commande N
|
||
|
cs_select();
|
||
|
spi_write_blocking(spi0, tampon_envoi, 4);
|
||
|
nb_recu = spi_read_blocking(spi0, 0, tampon, nb_a_lire);
|
||
|
cs_deselect();
|
||
|
|
||
|
// lire reponse N
|
||
|
cs_select();
|
||
|
spi_write_blocking(spi0, tampon_envoi, 4);
|
||
|
nb_recu = spi_read_blocking(spi0, 0, tampon, nb_a_lire);
|
||
|
cs_deselect();
|
||
|
|
||
|
}
|
||
|
|
||
|
int gyro_init_check(){
|
||
|
// Renvoi 0 si l'initialisation s'est bien passée
|
||
|
// Renvoi 1 si le gyroscope n'a pas répondu
|
||
|
uint8_t tampon[5]="\0\0\0\0\0";
|
||
|
gyro_read_register_blocking(0x0C, tampon, 1);
|
||
|
Gyro_traitementDonnees(tampon);
|
||
|
|
||
|
printf("Init check : %#06x\n", Gyro_SensorData.rateData);
|
||
|
|
||
|
/* if(tampon[0] == 0xd7){
|
||
|
return 0;
|
||
|
}*/
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
|
||
|
int gyro_config(){
|
||
|
// Registre CTRL1
|
||
|
// DR : 11
|
||
|
// BW : 10
|
||
|
// PD : 1
|
||
|
// Zen : 1
|
||
|
// Yen : 1
|
||
|
// Xen : 1
|
||
|
|
||
|
uint8_t config = 0b11101111;
|
||
|
uint16_t tampon[2] = {0x20, config};
|
||
|
uint8_t tampon2[10]="\0\0\0\0\0\0\0\0\0";
|
||
|
int statu, nb_read;
|
||
|
|
||
|
//while(spi_nb_busy(spi0) == SPI_BUSY);
|
||
|
cs_select();
|
||
|
int rep = spi_nb_write_data(spi0, tampon, 2);
|
||
|
if(rep == SPI_ERR_TRANSMIT_FIFO_FULL){
|
||
|
printf("Erreur: spi_read_register: SPI_ERR_TRANSMIT_FIFO_FULL\n");
|
||
|
//return statu;
|
||
|
}
|
||
|
while(spi_nb_busy(spi0));
|
||
|
cs_deselect();
|
||
|
|
||
|
int nb_lu = spi_read_register(spi0, 0x20, tampon2, 1);
|
||
|
|
||
|
|
||
|
|
||
|
printf("Nb lu: %d\n", nb_lu);
|
||
|
|
||
|
if(tampon2[1] == config){
|
||
|
//puts("gyro_config ok !");
|
||
|
return 0;
|
||
|
}else{
|
||
|
//printf("gyro_config FAILED ! :%#4x\n", tampon2[1]);
|
||
|
return 1;
|
||
|
}
|
||
|
// Registre
|
||
|
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
void gyro_get_vitesse_brute(struct t_angle_gyro* angle_gyro, struct t_angle_gyro* angle_gyro_moy){
|
||
|
uint8_t tampon[10]="\0\0\0\0\0\0\0\0\0";
|
||
|
int16_t rot_x, rot_y, rot_z;
|
||
|
spi_read_register(spi0, 0x28, tampon, 6);
|
||
|
|
||
|
rot_x = -(tampon[1] + (tampon[2] << 8));
|
||
|
rot_y = -(tampon[3] + (tampon[4] << 8));
|
||
|
rot_z = -(tampon[5] + (tampon[6] << 8));
|
||
|
|
||
|
if(angle_gyro_moy == NULL){
|
||
|
angle_gyro->rot_x = (int32_t) rot_x * 32;
|
||
|
angle_gyro->rot_y = (int32_t) rot_y * 32;
|
||
|
angle_gyro->rot_z = (int32_t) rot_z * 32;
|
||
|
}else{
|
||
|
angle_gyro->rot_x = (int32_t) rot_x * 32 - angle_gyro_moy->rot_x;
|
||
|
angle_gyro->rot_y = (int32_t) rot_y * 32 - angle_gyro_moy->rot_y;
|
||
|
angle_gyro->rot_z = (int32_t) rot_z * 32 - angle_gyro_moy->rot_z;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void gyro_get_vitesse_normalisee(struct t_angle_gyro* _vitesse_angulaire,
|
||
|
struct t_angle_gyro_double * _vitesse_gyro){
|
||
|
_vitesse_gyro->rot_x = (double)_vitesse_angulaire->rot_x * 0.00875 / 32.0;
|
||
|
_vitesse_gyro->rot_y = (double)_vitesse_angulaire->rot_y * 0.00875 / 32.0;
|
||
|
_vitesse_gyro->rot_z = (double)_vitesse_angulaire->rot_z * 0.00875 / 32.0;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
inline unsigned char Gyro_commande_SensorData(unsigned char autotest){
|
||
|
// On met SQ2 à 1 afin de différencier facilement une erreur et des données
|
||
|
uint8_t tamponGyroscopeEnvoi[4];
|
||
|
tamponGyroscopeEnvoi[0] = 0x30;
|
||
|
tamponGyroscopeEnvoi[1] = 0x00;
|
||
|
tamponGyroscopeEnvoi[2] = 0x00;
|
||
|
if (autotest){
|
||
|
tamponGyroscopeEnvoi[3] = 0x03;
|
||
|
}else{
|
||
|
tamponGyroscopeEnvoi[3] = 0x01;
|
||
|
}
|
||
|
// La parité, dans ce cas est triviale, autant prévoir tous les cas
|
||
|
//Gyro_commande_PariteData(tamponGyroscopeEnvoi);
|
||
|
//return SPI_envData(tamponGyroscopeEnvoi);
|
||
|
}
|
||
|
|
||
|
void Gyro_commande_PariteData(unsigned char* tampon){
|
||
|
unsigned char parite=0,i;
|
||
|
// Obtention de la parité actuelle
|
||
|
for(i=0 ; i< NB_MAX_CHAR_GYRO ; i++){
|
||
|
parite ^= pariteOctet(tampon[i]);
|
||
|
}
|
||
|
// On veut une parité impaire
|
||
|
parite ^= 0x01;
|
||
|
|
||
|
// On insere ce bit dans le message, au bon endroit
|
||
|
tampon[NB_MAX_CHAR_GYRO-1] = tampon[NB_MAX_CHAR_GYRO-1] | parite;
|
||
|
}
|
||
|
|
||
|
unsigned char pariteOctet(unsigned char octet){
|
||
|
unsigned char parite=0,i;
|
||
|
for (i=0 ; i<8 ; i++){
|
||
|
parite ^= octet & 0x01;
|
||
|
octet = octet >> 1;
|
||
|
}
|
||
|
return parite;
|
||
|
}
|
||
|
|
||
|
void Gyro_traitementDonnees(unsigned char * tamponRecu){
|
||
|
Gyro_SensorData.SQ = (tamponRecu[0]>>5) & 0x07;
|
||
|
Gyro_SensorData.P0 = (tamponRecu[0]>>4) & 0x01;
|
||
|
Gyro_SensorData.ST = (tamponRecu[0]>>2) & 0x03;
|
||
|
Gyro_SensorData.rateData = (int)
|
||
|
( (0xC000 &((unsigned int) (tamponRecu[0] & 0x03)<<14)) |
|
||
|
( 0x3FC0 & ((unsigned int) tamponRecu[1] << 6)) |
|
||
|
( 0x003F & (unsigned int) ( tamponRecu[2] >> 2)));
|
||
|
Gyro_SensorData.PLL = (tamponRecu[3] & 0x80) >> 7;
|
||
|
Gyro_SensorData.Q = (tamponRecu[3] & 0x40) >> 6;
|
||
|
Gyro_SensorData.NVM = (tamponRecu[3] & 0x20) >> 5;
|
||
|
Gyro_SensorData.POR = (tamponRecu[3] & 0x10) >> 4;
|
||
|
Gyro_SensorData.PWR = (tamponRecu[3] & 0x08) >> 3;
|
||
|
Gyro_SensorData.CST = (tamponRecu[3] & 0x04) >> 2;
|
||
|
Gyro_SensorData.CHK = (tamponRecu[3] & 0x02) >> 1;
|
||
|
Gyro_SensorData.P1 = (tamponRecu[3] & 0x01);
|
||
|
|
||
|
}
|
||
|
/*
|
||
|
unsigned char Gyro_gestion(void){
|
||
|
Gyro_commande_SensorData(0);
|
||
|
while(!SPI_recData(GyroscopeReception));
|
||
|
|
||
|
Gyro_traitementDonnees(GyroscopeReception);
|
||
|
if (Gyro_SensorData.SQ & 0x04){
|
||
|
Gyro_Angle +=(long) (Gyro_SensorData.rateData - angle0);
|
||
|
//Gyro_Angle = angle0;
|
||
|
}else{
|
||
|
Gyro_Angle = (long)0x3333;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
inline unsigned char Gyro_gestion_nb(){
|
||
|
if(SPI_recData(GyroscopeReception)){
|
||
|
Gyro_traitementDonnees(GyroscopeReception);
|
||
|
if (Gyro_SensorData.SQ & 0x04)
|
||
|
// calcul du nouvel angle
|
||
|
// TODO : Améliorer la stabilitée en augmentant la précision
|
||
|
Gyro_Angle +=(long) ((long)Gyro_SensorData.rateData - (long)angle0);
|
||
|
return 0;
|
||
|
}
|
||
|
return 1;
|
||
|
|
||
|
}
|
||
|
|
||
|
int Gyro_getAngle(void){
|
||
|
// 80° par secondes
|
||
|
// 5 kHz => 200 µs
|
||
|
// Gyro_Angle en 1,6 e-2 degré
|
||
|
return (int)(-Gyro_Angle / 5000 / 80);
|
||
|
}
|
||
|
long Gyro_getRawAngle(void){
|
||
|
// 80° par secondes
|
||
|
// 5 kHz => 200 µs
|
||
|
// Gyro_Angle en 1,6 e-2 degré
|
||
|
return Gyro_Angle ;
|
||
|
}
|
||
|
long double Gyro_getAngleRadian(void){
|
||
|
// 80° par secondes
|
||
|
// 5 kHz => 200 µs
|
||
|
// Gyro_Angle en 1,6 e-2 degré
|
||
|
return -Gyro_Angle * GYRO_COEF_RADIAN_5kHz;
|
||
|
}
|
||
|
unsigned char * Gyro_getRawData(){
|
||
|
return GyroscopeReception;
|
||
|
}
|
||
|
|
||
|
int Gyro_init(){
|
||
|
|
||
|
long long calcul_angle0;
|
||
|
|
||
|
int i, erreur_gyro;
|
||
|
|
||
|
Gyro_Timer_ms=100;
|
||
|
while(Gyro_Timer_ms);
|
||
|
// Envoie message auto-test des test
|
||
|
while(!Gyro_commande_SensorData(1));
|
||
|
while(!SPI_recData(GyroscopeReception));
|
||
|
|
||
|
// Attente 50 ms - les tests doivent indiquer des erreur
|
||
|
Gyro_Timer_ms=50;
|
||
|
while(Gyro_Timer_ms);
|
||
|
while(!Gyro_commande_SensorData(0));
|
||
|
while(!SPI_recData(GyroscopeReception));
|
||
|
|
||
|
// Attente 50 ms - les erreurs doivent s'être effacées
|
||
|
Gyro_Timer_ms=50;
|
||
|
while(Gyro_Timer_ms);
|
||
|
while(!Gyro_commande_SensorData(0));
|
||
|
while(!SPI_recData(GyroscopeReception));
|
||
|
|
||
|
// Calibration du gyroscope
|
||
|
calcul_angle0 = 0;
|
||
|
i=0;
|
||
|
erreur_gyro = 0;
|
||
|
while((i<NB_ACQ_CALIBRATION) && (erreur_gyro < NB_MAX_ERREUR_GYRO)){
|
||
|
while(!Gyro_commande_SensorData(0));
|
||
|
while(!SPI_recData(GyroscopeReception));
|
||
|
Gyro_traitementDonnees(GyroscopeReception);
|
||
|
if (Gyro_SensorData.SQ & 0x04){
|
||
|
calcul_angle0 += Gyro_SensorData.rateData;
|
||
|
erreur_gyro = 0;
|
||
|
i++;
|
||
|
}else{
|
||
|
erreur_gyro++;
|
||
|
}
|
||
|
__delay32(2000); // 50 µs
|
||
|
}
|
||
|
if (erreur_gyro < NB_MAX_ERREUR_GYRO){
|
||
|
erreur_gyro = 0;
|
||
|
// TODO : Améliorer la stabilitée en augmentant la précision
|
||
|
angle0 = (long)(calcul_angle0 / NB_ACQ_CALIBRATION);
|
||
|
Gyro_Pret=1;
|
||
|
}else{
|
||
|
erreur_gyro = 1;
|
||
|
}
|
||
|
|
||
|
|
||
|
return erreur_gyro;
|
||
|
}
|
||
|
*/
|