Lecture des codeurs: OK
This commit is contained in:
		
							parent
							
								
									4f8ba36580
								
							
						
					
					
						commit
						5b37406e9c
					
				| @ -12,13 +12,17 @@ pico_sdk_init() | ||||
| 
 | ||||
| add_executable(Mon_Projet | ||||
|   main.c | ||||
|   QEI.c | ||||
| ) | ||||
| 
 | ||||
| pico_generate_pio_header(Mon_Projet ${CMAKE_CURRENT_LIST_DIR}/quadrature_encoder.pio) | ||||
| 
 | ||||
| target_include_directories(Mon_Projet PRIVATE Mon_Projet_ULD_API/inc/) | ||||
| 
 | ||||
| target_link_libraries(Mon_Projet | ||||
|   hardware_i2c  | ||||
|   hardware_uart  | ||||
|   hardware_pio | ||||
|   pico_stdlib | ||||
|   pico_multicore | ||||
| ) | ||||
|  | ||||
							
								
								
									
										107
									
								
								QEI.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										107
									
								
								QEI.c
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,107 @@ | ||||
| #include <stdio.h> | ||||
| #include "pico/stdlib.h" | ||||
| #include "hardware/pio.h" | ||||
| #include "hardware/timer.h" | ||||
| #include "QEI.h" | ||||
| #include "quadrature_encoder.pio.h" | ||||
| 
 | ||||
| 
 | ||||
| /*** C'est ici que se fait la conversion en mm 
 | ||||
|  * ***/ | ||||
| 
 | ||||
| // Roues 60 mm de diamètre, 188,5 mm de circonférence
 | ||||
| // Réduction Moteur 30:1
 | ||||
| // Réduction poulie 16:12
 | ||||
| // Nombre d'impulsions par tour moteur : 200
 | ||||
| // Nombre d'impulsions par tour réducteur : 6000
 | ||||
| // Nombre d'impulsions par tour de roue : 8000
 | ||||
| // Impulsion / mm : 42,44
 | ||||
| 
 | ||||
| #define IMPULSION_PAR_MM (95.4929658551372f) | ||||
| #define ASSERMOTEUR_GAIN_P 160 | ||||
| #define ASSERMOTEUR_GAIN_I .80f | ||||
| 
 | ||||
| struct QEI_t QEI_A, QEI_B; | ||||
| 
 | ||||
| bool QEI_est_init = false; | ||||
| 
 | ||||
| PIO pio_QEI = pio0; | ||||
| 
 | ||||
| const uint CODEUR_1_A = 26; | ||||
| const uint CODEUR_1_B = 27; | ||||
| 
 | ||||
| void QEI_init(){ | ||||
|     // Initialisation des 3 modules QEI
 | ||||
|     // Chaque module QEI sera dans une machine à état du PIO 0
 | ||||
|     if(!QEI_est_init){ | ||||
| 
 | ||||
|     // Offset le début du programme
 | ||||
|     // Si ce n'est pas 0, le programme ne marchera pas
 | ||||
|     uint offset = pio_add_program(pio_QEI, &quadrature_encoder_program);  | ||||
|     if(offset != 0){ | ||||
|         printf("PIO init error: offset != 0"); | ||||
|     } | ||||
|     // bizarrement, il faut initialiser les boches en entrée pour les GPIO 26 et 27.
 | ||||
|     // Probablement car elle sont en analogique par défaut...
 | ||||
|     /*gpio_init(CODEUR_1_A);
 | ||||
|     gpio_set_dir(CODEUR_1_A, GPIO_IN); | ||||
| 
 | ||||
|     gpio_init(CODEUR_1_B); | ||||
|     gpio_set_dir(CODEUR_1_B, GPIO_IN);*/ | ||||
| 
 | ||||
|     // Initialisation des "machines à états" :
 | ||||
|     // QEI1 : broche 31 et 32 - pio : pio0, sm : 0, Offset : 0, GPIO 2 et 3, clock div : 0 pour commencer
 | ||||
|     // QEI1 : !!! Attention, il faudra modifier la carte élec !!! => Fait.
 | ||||
|     quadrature_encoder_program_init(pio_QEI, 0, offset, 2, 0); | ||||
|     // QEI2 : broche 26 et 27 - pio : pio0, sm : 1, Offset : 0, GPIO 11 et 12, clock div : 0 pour commencer
 | ||||
|     quadrature_encoder_program_init(pio_QEI, 1, offset, 11, 0); | ||||
| 
 | ||||
|     QEI_A.value=0; | ||||
|     QEI_B.value=0; | ||||
|     QEI_est_init=true; | ||||
|     } | ||||
| 
 | ||||
| } | ||||
| 
 | ||||
| /// @brief Lit les modules QEI et stock l'écart en cette lecture et la lecture précédente.
 | ||||
| void QEI_update(void){ | ||||
|      | ||||
|     int old_value; | ||||
| 
 | ||||
|     old_value = QEI_A.value; | ||||
|     QEI_A.value = quadrature_encoder_get_count(pio_QEI, 0); | ||||
|     QEI_A.delta = QEI_A.value - old_value; | ||||
| 
 | ||||
|     old_value = QEI_B.value; | ||||
|     QEI_B.value = quadrature_encoder_get_count(pio_QEI, 1); | ||||
|     QEI_B.delta = QEI_B.value - old_value; | ||||
| 
 | ||||
| } | ||||
| 
 | ||||
| /// @brief Renvoi le nombre d'impulsion du module QEI depuis la lecture précédente
 | ||||
| /// Les signe sont inversés (sauf A) car le reducteur inverse le sens de rotation.
 | ||||
| /// Attention, le signe du QEI_A est inversé par rapport aux autres à cause d'un soucis sur la carte électornique
 | ||||
| /// @param  qei : Nom du module à lire (QEI_A_NAME, QEI_B_NAME ou QEI_C_NAME)
 | ||||
| /// @return Nombre d'impulsion calculé lors du dernier appel de la function QEI_Update()
 | ||||
| int QEI_get(enum QEI_name_t qei){ | ||||
|     switch (qei) | ||||
|     { | ||||
|     case QEI_A_NAME: | ||||
|         return QEI_A.delta; | ||||
|         break; | ||||
| 
 | ||||
|     case QEI_B_NAME: | ||||
|         return -QEI_B.delta; | ||||
|         break; | ||||
|      | ||||
|     default: | ||||
|         break; | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| /// @brief Renvoi la distance parcourue en mm depuis la lecture précédente
 | ||||
| /// @param  qei : Nom du module à lire (QEI_A_NAME, QEI_B_NAME ou QEI_C_NAME)
 | ||||
| /// @return la distance parcourue en mm calculée lors du dernier appel de la function QEI_Update()
 | ||||
| float QEI_get_mm(enum QEI_name_t qei){ | ||||
|     return (float) QEI_get(qei) / (float)IMPULSION_PAR_MM; | ||||
| } | ||||
							
								
								
									
										16
									
								
								QEI.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										16
									
								
								QEI.h
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,16 @@ | ||||
| struct QEI_t{ | ||||
|     int value; | ||||
|     int delta; | ||||
| }; | ||||
| 
 | ||||
| enum QEI_name_t{ | ||||
|     QEI_A_NAME=0, | ||||
|     QEI_B_NAME=1, | ||||
| }; | ||||
| 
 | ||||
| extern struct QEI_t QEI_A, QEI_B, QEI_C; | ||||
| 
 | ||||
| void QEI_update(void); | ||||
| void QEI_init(void); | ||||
| int QEI_get(enum QEI_name_t qei); | ||||
| float QEI_get_mm(enum QEI_name_t qei); | ||||
							
								
								
									
										18
									
								
								Readme.md
									
									
									
									
									
								
							
							
						
						
									
										18
									
								
								Readme.md
									
									
									
									
									
								
							| @ -1,4 +1,18 @@ | ||||
| Projet modèle pour le Rpi Pico (RP2040) | ||||
| PAMI 2024 - Poivron Robotique | ||||
| ======================================= | ||||
| 
 | ||||
| Ce projet est un example pour le RPI Pico, tentant d'être le plus prêt à l'emploi possible. | ||||
| Code du PAMI 2024 de l'équipe Poivron Robotique. | ||||
| 
 | ||||
| La cart e contien les éléments suivants : | ||||
| 
 | ||||
| *    Microcontrôleur Raspberry Pi Pico | ||||
| *    Connecteur pour l’arrêt d’urgence | ||||
| *    2 prises moteurs (pilotés par un L293D) | ||||
| *    2 prises codeurs | ||||
| *    1 prise Gyroscope (L3GD20H) | ||||
| *    1 prise I2C pour du TOF | ||||
| *    1 prise "choix couleur" | ||||
| *    1 prise tirette | ||||
| *    Surveillance tension batterie | ||||
| *    1 LED | ||||
| *    3 Dip Switch | ||||
|  | ||||
							
								
								
									
										7
									
								
								main.c
									
									
									
									
									
								
							
							
						
						
									
										7
									
								
								main.c
									
									
									
									
									
								
							| @ -5,12 +5,15 @@ | ||||
| */ | ||||
| #include "pico/stdlib.h" | ||||
| #include <stdio.h> | ||||
| #include "QEI.h" | ||||
| 
 | ||||
| void main(void) | ||||
| { | ||||
|     stdio_init_all(); | ||||
| 	QEI_init(); | ||||
| 	while(1){ | ||||
| 		printf("Exemple\n"); | ||||
| 		sleep_ms(1000); | ||||
| 		QEI_update(); | ||||
| 		printf(">c1:%d\n>c2:%d\n", QEI_get(QEI_A_NAME), QEI_get(QEI_B_NAME) ); | ||||
| 		sleep_ms(10); | ||||
| 	} | ||||
| } | ||||
|  | ||||
							
								
								
									
										165
									
								
								quadrature_encoder.pio
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										165
									
								
								quadrature_encoder.pio
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,165 @@ | ||||
| ; | ||||
| ; Copyright (c) 2021 pmarques-dev @ github | ||||
| ; | ||||
| ; SPDX-License-Identifier: BSD-3-Clause | ||||
| ; | ||||
| 
 | ||||
| .program quadrature_encoder | ||||
| 
 | ||||
| ; this code must be loaded into address 0, but at 29 instructions, it probably | ||||
| ; wouldn't be able to share space with other programs anyway | ||||
| .origin 0 | ||||
| 
 | ||||
| 
 | ||||
| ; the code works by running a loop that continuously shifts the 2 phase pins into | ||||
| ; ISR and looks at the lower 4 bits to do a computed jump to an instruction that | ||||
| ; does the proper "do nothing" | "increment" | "decrement" action for that pin | ||||
| ; state change (or no change) | ||||
| 
 | ||||
| ; ISR holds the last state of the 2 pins during most of the code. The Y register | ||||
| ; keeps the current encoder count and is incremented / decremented according to | ||||
| ; the steps sampled | ||||
| 
 | ||||
| ; writing any non zero value to the TX FIFO makes the state machine push the | ||||
| ; current count to RX FIFO between 6 to 18 clocks afterwards. The worst case | ||||
| ; sampling loop takes 14 cycles, so this program is able to read step rates up | ||||
| ; to sysclk / 14  (e.g., sysclk 125MHz, max step rate = 8.9 Msteps/sec) | ||||
| 
 | ||||
| 
 | ||||
| ; 00 state | ||||
| 	JMP update	; read 00 | ||||
| 	JMP decrement	; read 01 | ||||
| 	JMP increment	; read 10 | ||||
| 	JMP update	; read 11 | ||||
| 
 | ||||
| ; 01 state | ||||
| 	JMP increment	; read 00 | ||||
| 	JMP update	; read 01 | ||||
| 	JMP update	; read 10 | ||||
| 	JMP decrement	; read 11 | ||||
| 
 | ||||
| ; 10 state | ||||
| 	JMP decrement	; read 00 | ||||
| 	JMP update	; read 01 | ||||
| 	JMP update	; read 10 | ||||
| 	JMP increment	; read 11 | ||||
| 
 | ||||
| ; to reduce code size, the last 2 states are implemented in place and become the | ||||
| ; target for the other jumps | ||||
| 
 | ||||
| ; 11 state | ||||
| 	JMP update	; read 00 | ||||
| 	JMP increment	; read 01 | ||||
| decrement: | ||||
| 	; note: the target of this instruction must be the next address, so that | ||||
| 	; the effect of the instruction does not depend on the value of Y. The | ||||
| 	; same is true for the "JMP X--" below. Basically "JMP Y--, <next addr>" | ||||
| 	; is just a pure "decrement Y" instruction, with no other side effects | ||||
| 	JMP Y--, update	; read 10 | ||||
| 
 | ||||
| 	; this is where the main loop starts | ||||
| .wrap_target | ||||
| update: | ||||
| 	; we start by checking the TX FIFO to see if the main code is asking for | ||||
| 	; the current count after the PULL noblock, OSR will have either 0 if | ||||
| 	; there was nothing or the value that was there | ||||
| 	SET X, 0 | ||||
| 	PULL noblock | ||||
| 
 | ||||
| 	; since there are not many free registers, and PULL is done into OSR, we | ||||
| 	; have to do some juggling to avoid losing the state information and | ||||
| 	; still place the values where we need them | ||||
| 	MOV X, OSR | ||||
| 	MOV OSR, ISR | ||||
| 
 | ||||
| 	; the main code did not ask for the count, so just go to "sample_pins" | ||||
| 	JMP !X, sample_pins | ||||
| 
 | ||||
| 	; if it did ask for the count, then we push it | ||||
| 	MOV ISR, Y	; we trash ISR, but we already have a copy in OSR | ||||
| 	PUSH | ||||
| 
 | ||||
| sample_pins: | ||||
| 	; we shift into ISR the last state of the 2 input pins (now in OSR) and | ||||
| 	; the new state of the 2 pins, thus producing the 4 bit target for the | ||||
| 	; computed jump into the correct action for this state | ||||
| 	MOV ISR, NULL | ||||
| 	IN OSR, 2 | ||||
| 	IN PINS, 2 | ||||
| 	MOV PC, ISR | ||||
| 
 | ||||
| 	; the PIO does not have a increment instruction, so to do that we do a | ||||
| 	; negate, decrement, negate sequence | ||||
| increment: | ||||
| 	MOV X, !Y | ||||
| 	JMP X--, increment_cont | ||||
| increment_cont: | ||||
| 	MOV Y, !X | ||||
| .wrap	; the .wrap here avoids one jump instruction and saves a cycle too | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| % c-sdk { | ||||
| 
 | ||||
| #include "hardware/clocks.h" | ||||
| #include "hardware/gpio.h" | ||||
| 
 | ||||
| // max_step_rate is used to lower the clock of the state machine to save power | ||||
| // if the application doesn't require a very high sampling rate. Passing zero | ||||
| // will set the clock to the maximum, which gives a max step rate of around | ||||
| // 8.9 Msteps/sec at 125MHz | ||||
| 
 | ||||
| static inline void quadrature_encoder_program_init(PIO pio, uint sm, uint offset, uint pin, int max_step_rate) | ||||
| { | ||||
| 	pio_sm_set_consecutive_pindirs(pio, sm, pin, 2, false); | ||||
| 	gpio_pull_up(pin); | ||||
| 	gpio_pull_up(pin + 1); | ||||
| 
 | ||||
| 	pio_sm_config c = quadrature_encoder_program_get_default_config(offset); | ||||
| 	sm_config_set_in_pins(&c, pin); // for WAIT, IN | ||||
| 	sm_config_set_jmp_pin(&c, pin); // for JMP | ||||
| 	// shift to left, autopull disabled | ||||
| 	sm_config_set_in_shift(&c, false, false, 32); | ||||
| 	// don't join FIFO's | ||||
| 	sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_NONE); | ||||
| 
 | ||||
| 	// passing "0" as the sample frequency, | ||||
| 	if (max_step_rate == 0) { | ||||
| 		sm_config_set_clkdiv(&c, 1.0); | ||||
| 	} else { | ||||
| 		// one state machine loop takes at most 14 cycles | ||||
| 		float div = (float)clock_get_hz(clk_sys) / (14 * max_step_rate); | ||||
| 		sm_config_set_clkdiv(&c, div); | ||||
| 	} | ||||
| 
 | ||||
| 	pio_sm_init(pio, sm, offset, &c); | ||||
| 	pio_sm_set_enabled(pio, sm, true); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| // When requesting the current count we may have to wait a few cycles (average | ||||
| // ~11 sysclk cycles) for the state machine to reply. If we are reading multiple | ||||
| // encoders, we may request them all in one go and then fetch them all, thus | ||||
| // avoiding doing the wait multiple times. If we are reading just one encoder, | ||||
| // we can use the "get_count" function to request and wait | ||||
| 
 | ||||
| static inline void quadrature_encoder_request_count(PIO pio, uint sm) | ||||
| { | ||||
| 	pio->txf[sm] = 1; | ||||
| } | ||||
| 
 | ||||
| static inline int32_t quadrature_encoder_fetch_count(PIO pio, uint sm) | ||||
| { | ||||
| 	while (pio_sm_is_rx_fifo_empty(pio, sm)) | ||||
| 		tight_loop_contents(); | ||||
| 	return pio->rxf[sm]; | ||||
| } | ||||
| 
 | ||||
| static inline int32_t quadrature_encoder_get_count(PIO pio, uint sm) | ||||
| { | ||||
| 	quadrature_encoder_request_count(pio, sm); | ||||
| 	return quadrature_encoder_fetch_count(pio, sm); | ||||
| } | ||||
| 
 | ||||
| %} | ||||
| 
 | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user