LogEtComUSB/lib/sd_driver/SDIO/rp2040_sdio.c

861 lines
34 KiB
C
Executable File

// Implementation of SDIO communication for RP2040
//
// The RP2040 official work-in-progress code at
// https://github.com/raspberrypi/pico-extras/tree/master/src/rp2_common/pico_sd_card
// may be useful reference, but this is independent implementation.
//
// For official SDIO specifications, refer to:
// https://www.sdcard.org/downloads/pls/
// "SDIO Physical Layer Simplified Specification Version 8.00"
#include <assert.h>
#include <string.h>
#include <stdlib.h>
//
#include "hardware/dma.h"
#include "hardware/gpio.h"
#include "hardware/pio.h"
#if !PICO_RISCV
# if PICO_RP2040
# include "RP2040.h"
# endif
# if PICO_RP2350
# include "RP2350.h"
# endif
#endif
//
#include "dma_interrupts.h"
#include "hw_config.h"
#include "rp2040_sdio.h"
#include "rp2040_sdio.pio.h"
#include "delays.h"
#include "sd_card.h"
#include "sd_timeouts.h"
#include "my_debug.h"
#include "util.h"
//
#include "rp2040_sdio.h"
#define azdbg(arg1, ...) {\
DBG_PRINTF("%s,%s:%d %s\n", __func__, __FILE__, __LINE__, arg1); \
}
#define STATE sd_card_p->sdio_if_p->state
#define SDIO_PIO sd_card_p->sdio_if_p->SDIO_PIO
#define SDIO_CMD_SM STATE.SDIO_CMD_SM
#define SDIO_DATA_SM STATE.SDIO_DATA_SM
#define SDIO_DMA_CH STATE.SDIO_DMA_CH
#define SDIO_DMA_CHB STATE.SDIO_DMA_CHB
#define SDIO_CMD sd_card_p->sdio_if_p->CMD_gpio
#define SDIO_CLK sd_card_p->sdio_if_p->CLK_gpio
#define SDIO_D0 sd_card_p->sdio_if_p->D0_gpio
#define SDIO_D1 sd_card_p->sdio_if_p->D1_gpio
#define SDIO_D2 sd_card_p->sdio_if_p->D2_gpio
#define SDIO_D3 sd_card_p->sdio_if_p->D3_gpio
// Force everything to idle state
static sdio_status_t rp2040_sdio_stop(sd_card_t *sd_card_p);
/*******************************************************
* Checksum algorithms
*******************************************************/
// Table lookup for calculating CRC-7 checksum that is used in SDIO command packets.
// Usage:
// uint8_t crc = 0;
// crc = crc7_table[crc ^ byte];
// .. repeat for every byte ..
static const uint8_t crc7_table[256] = {
0x00, 0x12, 0x24, 0x36, 0x48, 0x5a, 0x6c, 0x7e, 0x90, 0x82, 0xb4, 0xa6, 0xd8, 0xca, 0xfc, 0xee,
0x32, 0x20, 0x16, 0x04, 0x7a, 0x68, 0x5e, 0x4c, 0xa2, 0xb0, 0x86, 0x94, 0xea, 0xf8, 0xce, 0xdc,
0x64, 0x76, 0x40, 0x52, 0x2c, 0x3e, 0x08, 0x1a, 0xf4, 0xe6, 0xd0, 0xc2, 0xbc, 0xae, 0x98, 0x8a,
0x56, 0x44, 0x72, 0x60, 0x1e, 0x0c, 0x3a, 0x28, 0xc6, 0xd4, 0xe2, 0xf0, 0x8e, 0x9c, 0xaa, 0xb8,
0xc8, 0xda, 0xec, 0xfe, 0x80, 0x92, 0xa4, 0xb6, 0x58, 0x4a, 0x7c, 0x6e, 0x10, 0x02, 0x34, 0x26,
0xfa, 0xe8, 0xde, 0xcc, 0xb2, 0xa0, 0x96, 0x84, 0x6a, 0x78, 0x4e, 0x5c, 0x22, 0x30, 0x06, 0x14,
0xac, 0xbe, 0x88, 0x9a, 0xe4, 0xf6, 0xc0, 0xd2, 0x3c, 0x2e, 0x18, 0x0a, 0x74, 0x66, 0x50, 0x42,
0x9e, 0x8c, 0xba, 0xa8, 0xd6, 0xc4, 0xf2, 0xe0, 0x0e, 0x1c, 0x2a, 0x38, 0x46, 0x54, 0x62, 0x70,
0x82, 0x90, 0xa6, 0xb4, 0xca, 0xd8, 0xee, 0xfc, 0x12, 0x00, 0x36, 0x24, 0x5a, 0x48, 0x7e, 0x6c,
0xb0, 0xa2, 0x94, 0x86, 0xf8, 0xea, 0xdc, 0xce, 0x20, 0x32, 0x04, 0x16, 0x68, 0x7a, 0x4c, 0x5e,
0xe6, 0xf4, 0xc2, 0xd0, 0xae, 0xbc, 0x8a, 0x98, 0x76, 0x64, 0x52, 0x40, 0x3e, 0x2c, 0x1a, 0x08,
0xd4, 0xc6, 0xf0, 0xe2, 0x9c, 0x8e, 0xb8, 0xaa, 0x44, 0x56, 0x60, 0x72, 0x0c, 0x1e, 0x28, 0x3a,
0x4a, 0x58, 0x6e, 0x7c, 0x02, 0x10, 0x26, 0x34, 0xda, 0xc8, 0xfe, 0xec, 0x92, 0x80, 0xb6, 0xa4,
0x78, 0x6a, 0x5c, 0x4e, 0x30, 0x22, 0x14, 0x06, 0xe8, 0xfa, 0xcc, 0xde, 0xa0, 0xb2, 0x84, 0x96,
0x2e, 0x3c, 0x0a, 0x18, 0x66, 0x74, 0x42, 0x50, 0xbe, 0xac, 0x9a, 0x88, 0xf6, 0xe4, 0xd2, 0xc0,
0x1c, 0x0e, 0x38, 0x2a, 0x54, 0x46, 0x70, 0x62, 0x8c, 0x9e, 0xa8, 0xba, 0xc4, 0xd6, 0xe0, 0xf2
};
// Calculate the CRC16 checksum for parallel 4 bit lines separately.
// When the SDIO bus operates in 4-bit mode, the CRC16 algorithm
// is applied to each line separately and generates total of
// 4 x 16 = 64 bits of checksum.
__attribute__((optimize("Ofast")))
uint64_t sdio_crc16_4bit_checksum(uint32_t *data, uint32_t num_words)
{
uint64_t crc = 0;
uint32_t *end = data + num_words;
while (data < end)
{
for (int unroll = 0; unroll < 4; unroll++)
{
// Each 32-bit word contains 8 bits per line.
// Reverse the bytes because SDIO protocol is big-endian.
uint32_t data_in = __builtin_bswap32(*data++);
// Shift out 8 bits for each line
uint32_t data_out = crc >> 32;
crc <<= 32;
// XOR outgoing data to itself with 4 bit delay
data_out ^= (data_out >> 16);
// XOR incoming data to outgoing data with 4 bit delay
data_out ^= (data_in >> 16);
// XOR outgoing and incoming data to accumulator at each tap
uint64_t xorred = data_out ^ data_in;
crc ^= xorred;
crc ^= xorred << (5 * 4);
crc ^= xorred << (12 * 4);
}
}
return crc;
}
/*******************************************************
* Basic SDIO command execution
*******************************************************/
static void sdio_send_command(const sd_card_t *sd_card_p, uint8_t command, uint32_t arg, uint8_t response_bits)
{
// azdbg("SDIO Command: ", (int)command, " arg ", arg);
// Format the arguments in the way expected by the PIO code.
uint32_t word0 =
(47 << 24) | // Number of bits in command minus one
( 1 << 22) | // Transfer direction from host to card
(command << 16) | // Command byte
(((arg >> 24) & 0xFF) << 8) | // MSB byte of argument
(((arg >> 16) & 0xFF) << 0);
uint32_t word1 =
(((arg >> 8) & 0xFF) << 24) |
(((arg >> 0) & 0xFF) << 16) | // LSB byte of argument
( 1 << 8); // End bit
// Set number of bits in response minus one, or leave at 0 if no response expected
if (response_bits)
{
word1 |= ((response_bits - 1) << 0);
}
// Calculate checksum in the order that the bytes will be transmitted (big-endian)
uint8_t crc = 0;
crc = crc7_table[crc ^ ((word0 >> 16) & 0xFF)];
crc = crc7_table[crc ^ ((word0 >> 8) & 0xFF)];
crc = crc7_table[crc ^ ((word0 >> 0) & 0xFF)];
crc = crc7_table[crc ^ ((word1 >> 24) & 0xFF)];
crc = crc7_table[crc ^ ((word1 >> 16) & 0xFF)];
word1 |= crc << 8;
// Transmit command
pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
pio_sm_put(SDIO_PIO, SDIO_CMD_SM, word0);
pio_sm_put(SDIO_PIO, SDIO_CMD_SM, word1);
}
sdio_status_t rp2040_sdio_command_R1(sd_card_t *sd_card_p, uint8_t command, uint32_t arg, uint32_t *response)
{
sdio_send_command(sd_card_p, command, arg, response ? 48 : 0);
// Wait for response
uint32_t start = millis();
uint32_t wait_words = response ? 2 : 1;
while (pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM) < wait_words)
{
if ((uint32_t)(millis() - start) > sd_timeouts.rp2040_sdio_command_R1)
{
if (command != 8) // Don't log for missing SD card
{
azdbg("Timeout waiting for response in rp2040_sdio_command_R1(", (int)command, "), ",
"PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)STATE.pio_cmd_clk_offset,
" RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM),
" TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM));
EMSG_PRINTF("%s: Timeout waiting for response in rp2040_sdio_command_R1(0x%hx)\n", __func__, command);
}
// Reset the state machine program
pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_jmp(STATE.pio_cmd_clk_offset));
return SDIO_ERR_RESPONSE_TIMEOUT;
}
}
if (response)
{
// Read out response packet
uint32_t resp0 = pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
uint32_t resp1 = pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
// azdbg("SDIO R1 response: ", resp0, " ", resp1);
// Calculate response checksum
uint8_t crc = 0;
crc = crc7_table[crc ^ ((resp0 >> 24) & 0xFF)];
crc = crc7_table[crc ^ ((resp0 >> 16) & 0xFF)];
crc = crc7_table[crc ^ ((resp0 >> 8) & 0xFF)];
crc = crc7_table[crc ^ ((resp0 >> 0) & 0xFF)];
crc = crc7_table[crc ^ ((resp1 >> 8) & 0xFF)];
uint8_t actual_crc = ((resp1 >> 0) & 0xFE);
if (crc != actual_crc)
{
// azdbg("rp2040_sdio_command_R1(", (int)command, "): CRC error, calculated ", crc, " packet has ", actual_crc);
EMSG_PRINTF("rp2040_sdio_command_R1(%d): CRC error, calculated 0x%hx, packet has 0x%hx\n", command, crc, actual_crc);
return SDIO_ERR_RESPONSE_CRC;
}
uint8_t response_cmd = ((resp0 >> 24) & 0xFF);
if (response_cmd != command && command != 41)
{
// azdbg("rp2040_sdio_command_R1(", (int)command, "): received reply for ", (int)response_cmd);
EMSG_PRINTF("%d rp2040_sdio_command_R1(%d): received reply for %d\n", __LINE__, command, response_cmd);
return SDIO_ERR_RESPONSE_CODE;
}
*response = ((resp0 & 0xFFFFFF) << 8) | ((resp1 >> 8) & 0xFF);
}
else
{
// Read out dummy marker
pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
}
return SDIO_OK;
}
sdio_status_t rp2040_sdio_command_R2(const sd_card_t *sd_card_p, uint8_t command, uint32_t arg, uint8_t *response)
{
// The response is too long to fit in the PIO FIFO, so use DMA to receive it.
pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
uint32_t response_buf[5];
dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CH);
channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
channel_config_set_read_increment(&dmacfg, false);
channel_config_set_write_increment(&dmacfg, true);
channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_CMD_SM, false));
dma_channel_configure(SDIO_DMA_CH, &dmacfg, &response_buf, &SDIO_PIO->rxf[SDIO_CMD_SM], 5, true);
sdio_send_command(sd_card_p, command, arg, 136);
uint32_t start = millis();
while (dma_channel_is_busy(SDIO_DMA_CH))
{
if ((uint32_t)(millis() - start) > sd_timeouts.rp2040_sdio_command_R2)
{
azdbg("Timeout waiting for response in rp2040_sdio_command_R2(", (int)command, "), ",
"PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)STATE.pio_cmd_clk_offset,
" RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM),
" TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM));
// Reset the state machine program
dma_channel_abort(SDIO_DMA_CH);
pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_jmp(STATE.pio_cmd_clk_offset));
return SDIO_ERR_RESPONSE_TIMEOUT;
}
}
dma_channel_abort(SDIO_DMA_CH);
// Copy the response payload to output buffer
response[0] = ((response_buf[0] >> 16) & 0xFF);
response[1] = ((response_buf[0] >> 8) & 0xFF);
response[2] = ((response_buf[0] >> 0) & 0xFF);
response[3] = ((response_buf[1] >> 24) & 0xFF);
response[4] = ((response_buf[1] >> 16) & 0xFF);
response[5] = ((response_buf[1] >> 8) & 0xFF);
response[6] = ((response_buf[1] >> 0) & 0xFF);
response[7] = ((response_buf[2] >> 24) & 0xFF);
response[8] = ((response_buf[2] >> 16) & 0xFF);
response[9] = ((response_buf[2] >> 8) & 0xFF);
response[10] = ((response_buf[2] >> 0) & 0xFF);
response[11] = ((response_buf[3] >> 24) & 0xFF);
response[12] = ((response_buf[3] >> 16) & 0xFF);
response[13] = ((response_buf[3] >> 8) & 0xFF);
response[14] = ((response_buf[3] >> 0) & 0xFF);
response[15] = ((response_buf[4] >> 0) & 0xFF);
// Calculate checksum of the payload
uint8_t crc = 0;
for (int i = 0; i < 15; i++)
{
crc = crc7_table[crc ^ response[i]];
}
uint8_t actual_crc = response[15] & 0xFE;
if (crc != actual_crc)
{
azdbg("rp2040_sdio_command_R2(", (int)command, "): CRC error, calculated ", crc, " packet has ", actual_crc);
return SDIO_ERR_RESPONSE_CRC;
}
uint8_t response_cmd = ((response_buf[0] >> 24) & 0xFF);
if (response_cmd != 0x3F)
{
azdbg("rp2040_sdio_command_R2(", (int)command, "): Expected reply code 0x3F");
return SDIO_ERR_RESPONSE_CODE;
}
return SDIO_OK;
}
sdio_status_t rp2040_sdio_command_R3(sd_card_t *sd_card_p, uint8_t command, uint32_t arg, uint32_t *response)
{
sdio_send_command(sd_card_p, command, arg, 48);
// Wait for response
uint32_t start = millis();
while (pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM) < 2)
{
if ((uint32_t)(millis() - start) > sd_timeouts.rp2040_sdio_command_R3)
{
azdbg("Timeout waiting for response in rp2040_sdio_command_R3(", (int)command, "), ",
"PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_CMD_SM) - (int)STATE.pio_cmd_clk_offset,
" RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_CMD_SM),
" TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_CMD_SM));
// Reset the state machine program
pio_sm_clear_fifos(SDIO_PIO, SDIO_CMD_SM);
pio_sm_exec(SDIO_PIO, SDIO_CMD_SM, pio_encode_jmp(STATE.pio_cmd_clk_offset));
return SDIO_ERR_RESPONSE_TIMEOUT;
}
}
// Read out response packet
uint32_t resp0 = pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
uint32_t resp1 = pio_sm_get(SDIO_PIO, SDIO_CMD_SM);
*response = ((resp0 & 0xFFFFFF) << 8) | ((resp1 >> 8) & 0xFF);
// azdbg("SDIO R3 response: ", resp0, " ", resp1);
return SDIO_OK;
}
/*******************************************************
* Data reception from SD card
*******************************************************/
sdio_status_t rp2040_sdio_rx_start(sd_card_t *sd_card_p, uint8_t *buffer, uint32_t num_blocks, size_t block_size)
{
// Buffer must be aligned
assert(((uint32_t)buffer & 3) == 0 && num_blocks <= SDIO_MAX_BLOCKS);
STATE.transfer_state = SDIO_RX;
STATE.transfer_start_time = millis();
STATE.data_buf = (uint32_t*)buffer;
STATE.blocks_done = 0;
STATE.total_blocks = num_blocks;
STATE.blocks_checksumed = 0;
STATE.checksum_errors = 0;
// Create DMA block descriptors to store each block of 512 bytes of data to buffer
// and then 8 bytes to STATE.received_checksums.
for (uint32_t i = 0; i < num_blocks; i++)
{
STATE.dma_blocks[i * 2].write_addr = buffer + i * block_size;
STATE.dma_blocks[i * 2].transfer_count = block_size / sizeof(uint32_t);
STATE.dma_blocks[i * 2 + 1].write_addr = &STATE.received_checksums[i];
STATE.dma_blocks[i * 2 + 1].transfer_count = 2;
}
STATE.dma_blocks[num_blocks * 2].write_addr = 0;
STATE.dma_blocks[num_blocks * 2].transfer_count = 0;
// Configure first DMA channel for reading from the PIO RX fifo
dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CH);
channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
channel_config_set_read_increment(&dmacfg, false);
channel_config_set_write_increment(&dmacfg, true);
channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_DATA_SM, false));
channel_config_set_bswap(&dmacfg, true);
channel_config_set_chain_to(&dmacfg, SDIO_DMA_CHB);
dma_channel_configure(SDIO_DMA_CH, &dmacfg, 0, &SDIO_PIO->rxf[SDIO_DATA_SM], 0, false);
// Configure second DMA channel for reconfiguring the first one
dmacfg = dma_channel_get_default_config(SDIO_DMA_CHB);
channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
channel_config_set_read_increment(&dmacfg, true);
channel_config_set_write_increment(&dmacfg, true);
channel_config_set_ring(&dmacfg, true, 3);
dma_channel_configure(SDIO_DMA_CHB, &dmacfg, &dma_hw->ch[SDIO_DMA_CH].al1_write_addr,
STATE.dma_blocks, 2, false);
// Initialize PIO state machine
pio_sm_init(SDIO_PIO, SDIO_DATA_SM, STATE.pio_data_rx_offset, &STATE.pio_cfg_data_rx);
pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_DATA_SM, SDIO_D0, 4, false);
// Write number of nibbles to receive to Y register
pio_sm_put(SDIO_PIO, SDIO_DATA_SM, block_size * 2 + 16 - 1);
pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_out(pio_y, 32));
// Enable RX FIFO join because we don't need the TX FIFO during transfer.
// This gives more leeway for the DMA block switching
SDIO_PIO->sm[SDIO_DATA_SM].shiftctrl |= PIO_SM0_SHIFTCTRL_FJOIN_RX_BITS;
// Start PIO and DMA
dma_channel_start(SDIO_DMA_CHB);
pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, true);
return SDIO_OK;
}
// Check checksums for received blocks
static void sdio_verify_rx_checksums(sd_card_t *sd_card_p, uint32_t maxcount, size_t block_size_words)
{
while (STATE.blocks_checksumed < STATE.blocks_done && maxcount-- > 0)
{
// Calculate checksum from received data
int blockidx = STATE.blocks_checksumed++;
uint64_t checksum = sdio_crc16_4bit_checksum(STATE.data_buf + blockidx * block_size_words,
block_size_words);
// Convert received checksum to little-endian format
uint32_t top = __builtin_bswap32(STATE.received_checksums[blockidx].top);
uint32_t bottom = __builtin_bswap32(STATE.received_checksums[blockidx].bottom);
uint64_t expected = ((uint64_t)top << 32) | bottom;
if (checksum != expected)
{
STATE.checksum_errors++;
if (STATE.checksum_errors == 1)
{
EMSG_PRINTF("SDIO checksum error in reception: block %d calculated 0x%llx expected 0x%llx\n",
blockidx, checksum, expected);
dump_bytes(block_size_words, (uint8_t *)STATE.data_buf + blockidx * block_size_words);
}
}
}
}
sdio_status_t rp2040_sdio_rx_poll(sd_card_t *sd_card_p, size_t block_size_words)
{
// Was everything done when the previous rx_poll() finished?
if (STATE.blocks_done >= STATE.total_blocks)
{
STATE.transfer_state = SDIO_IDLE;
}
else
{
// Use the idle time to calculate checksums
sdio_verify_rx_checksums(sd_card_p, 4, block_size_words);
// Check how many DMA control blocks have been consumed
uint32_t dma_ctrl_block_count = (dma_hw->ch[SDIO_DMA_CHB].read_addr - (uint32_t)&STATE.dma_blocks);
dma_ctrl_block_count /= sizeof(STATE.dma_blocks[0]);
// Compute how many complete SDIO blocks have been transferred
// When transfer ends, dma_ctrl_block_count == STATE.total_blocks * 2 + 1
STATE.blocks_done = (dma_ctrl_block_count - 1) / 2;
// NOTE: When all blocks are done, rx_poll() still returns SDIO_BUSY once.
// This provides a chance to start the SCSI transfer before the last checksums
// are computed. Any checksum failures can be indicated in SCSI status after
// the data transfer has finished.
}
if (STATE.transfer_state == SDIO_IDLE)
{
// Verify all remaining checksums.
sdio_verify_rx_checksums(sd_card_p, STATE.total_blocks, block_size_words);
if (STATE.checksum_errors == 0)
return SDIO_OK;
else
return SDIO_ERR_DATA_CRC;
}
else if (millis() - STATE.transfer_start_time >= sd_timeouts.rp2040_sdio_rx_poll)
{
azdbg("rp2040_sdio_rx_poll() timeout, "
"PIO PC: ", (int)pio_sm_get_pc(SDIO_PIO, SDIO_DATA_SM) - (int)STATE.pio_data_rx_offset,
" RXF: ", (int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_DATA_SM),
" TXF: ", (int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_DATA_SM),
" DMA CNT: ", dma_hw->ch[SDIO_DMA_CH].al2_transfer_count);
rp2040_sdio_stop(sd_card_p);
return SDIO_ERR_DATA_TIMEOUT;
}
return SDIO_BUSY;
}
/*******************************************************
* Data transmission to SD card
*******************************************************/
static void sdio_start_next_block_tx(sd_card_t *sd_card_p)
{
// Initialize PIO
pio_sm_init(SDIO_PIO, SDIO_DATA_SM, STATE.pio_data_tx_offset, &STATE.pio_cfg_data_tx);
// Configure DMA to send the data block payload (512 bytes)
dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CH);
channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
channel_config_set_read_increment(&dmacfg, true);
channel_config_set_write_increment(&dmacfg, false);
channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_DATA_SM, true));
channel_config_set_bswap(&dmacfg, true);
channel_config_set_chain_to(&dmacfg, SDIO_DMA_CHB);
dma_channel_configure(SDIO_DMA_CH, &dmacfg,
&SDIO_PIO->txf[SDIO_DATA_SM], STATE.data_buf + STATE.blocks_done * SDIO_WORDS_PER_BLOCK,
SDIO_WORDS_PER_BLOCK, false);
// Prepare second DMA channel to send the CRC and block end marker
uint64_t crc = STATE.next_wr_block_checksum;
STATE.end_token_buf[0] = (uint32_t)(crc >> 32);
STATE.end_token_buf[1] = (uint32_t)(crc >> 0);
STATE.end_token_buf[2] = 0xFFFFFFFF;
channel_config_set_bswap(&dmacfg, false);
dma_channel_configure(SDIO_DMA_CHB, &dmacfg,
&SDIO_PIO->txf[SDIO_DATA_SM], STATE.end_token_buf, 3, false);
// Enable IRQ to trigger when block is done
switch (sd_card_p->sdio_if_p->DMA_IRQ_num) {
case DMA_IRQ_0:
// Clear any pending interrupt service request:
dma_hw->ints0 = 1 << SDIO_DMA_CHB;
dma_channel_set_irq0_enabled(SDIO_DMA_CHB, true);
break;
case DMA_IRQ_1:
// Clear any pending interrupt service request:
dma_hw->ints1 = 1 << SDIO_DMA_CHB;
dma_channel_set_irq1_enabled(SDIO_DMA_CHB, true);
break;
default:
assert(false);
}
// Initialize register X with nibble count and register Y with response bit count
pio_sm_put(SDIO_PIO, SDIO_DATA_SM, 1048);
pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_out(pio_x, 32));
pio_sm_put(SDIO_PIO, SDIO_DATA_SM, 31);
pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_out(pio_y, 32));
// Initialize pins to output and high
pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_set(pio_pins, 15));
pio_sm_exec(SDIO_PIO, SDIO_DATA_SM, pio_encode_set(pio_pindirs, 15));
// Write start token and start the DMA transfer.
pio_sm_put(SDIO_PIO, SDIO_DATA_SM, 0xFFFFFFF0);
dma_channel_start(SDIO_DMA_CH);
// Start state machine
pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, true);
}
static void sdio_compute_next_tx_checksum(sd_card_t *sd_card_p)
{
assert (STATE.blocks_done < STATE.total_blocks && STATE.blocks_checksumed < STATE.total_blocks);
int blockidx = STATE.blocks_checksumed++;
STATE.next_wr_block_checksum = sdio_crc16_4bit_checksum(STATE.data_buf + blockidx * SDIO_WORDS_PER_BLOCK,
SDIO_WORDS_PER_BLOCK);
}
// Start transferring data from memory to SD card
sdio_status_t rp2040_sdio_tx_start(sd_card_t *sd_card_p, const uint8_t *buffer, uint32_t num_blocks)
{
// Buffer must be aligned
assert(((uint32_t)buffer & 3) == 0 && num_blocks <= SDIO_MAX_BLOCKS);
STATE.transfer_state = SDIO_TX;
STATE.transfer_start_time = millis();
STATE.data_buf = (uint32_t*)buffer;
STATE.blocks_done = 0;
STATE.total_blocks = num_blocks;
STATE.blocks_checksumed = 0;
STATE.checksum_errors = 0;
// Compute first block checksum
sdio_compute_next_tx_checksum(sd_card_p);
// Start first DMA transfer and PIO
sdio_start_next_block_tx(sd_card_p);
if (STATE.blocks_checksumed < STATE.total_blocks)
{
// Precompute second block checksum
sdio_compute_next_tx_checksum(sd_card_p);
}
return SDIO_OK;
}
static sdio_status_t check_sdio_write_response(uint32_t card_response)
{
// Shift card response until top bit is 0 (the start bit)
// The format of response is poorly documented in SDIO spec but refer to e.g.
// http://my-cool-projects.blogspot.com/2013/02/the-mysterious-sd-card-crc-status.html
uint32_t resp = card_response;
if (!(~resp & 0xFFFF0000)) resp <<= 16;
if (!(~resp & 0xFF000000)) resp <<= 8;
if (!(~resp & 0xF0000000)) resp <<= 4;
if (!(~resp & 0xC0000000)) resp <<= 2;
if (!(~resp & 0x80000000)) resp <<= 1;
uint32_t wr_status = (resp >> 28) & 7;
if (wr_status == 2)
{
return SDIO_OK;
}
else if (wr_status == 5)
{
EMSG_PRINTF("SDIO card reports write CRC error, status %lx\n", card_response);
return SDIO_ERR_WRITE_CRC;
}
else if (wr_status == 6)
{
EMSG_PRINTF("SDIO card reports write failure, status %lx\n", card_response);
return SDIO_ERR_WRITE_FAIL;
}
else
{
EMSG_PRINTF("SDIO card reports unknown write status %lx\n", card_response);
return SDIO_ERR_WRITE_FAIL;
}
}
// When a block finishes, this IRQ handler starts the next one
void sdio_irq_handler(sd_card_t *sd_card_p) {
if (STATE.transfer_state == SDIO_TX)
{
if (!dma_channel_is_busy(SDIO_DMA_CH) && !dma_channel_is_busy(SDIO_DMA_CHB))
{
// Main data transfer is finished now.
// When card is ready, PIO will put card response on RX fifo
STATE.transfer_state = SDIO_TX_WAIT_IDLE;
if (!pio_sm_is_rx_fifo_empty(SDIO_PIO, SDIO_DATA_SM))
{
// Card is already idle
STATE.card_response = pio_sm_get(SDIO_PIO, SDIO_DATA_SM);
}
else
{
// Use DMA to wait for the response
dma_channel_config dmacfg = dma_channel_get_default_config(SDIO_DMA_CHB);
channel_config_set_transfer_data_size(&dmacfg, DMA_SIZE_32);
channel_config_set_read_increment(&dmacfg, false);
channel_config_set_write_increment(&dmacfg, false);
channel_config_set_dreq(&dmacfg, pio_get_dreq(SDIO_PIO, SDIO_DATA_SM, false));
dma_channel_configure(SDIO_DMA_CHB, &dmacfg,
&STATE.card_response, &SDIO_PIO->rxf[SDIO_DATA_SM], 1, true);
}
}
}
if (STATE.transfer_state == SDIO_TX_WAIT_IDLE)
{
if (!dma_channel_is_busy(SDIO_DMA_CHB))
{
STATE.wr_status = check_sdio_write_response(STATE.card_response);
if (STATE.wr_status != SDIO_OK)
{
rp2040_sdio_stop(sd_card_p);
return;
}
STATE.blocks_done++;
if (STATE.blocks_done < STATE.total_blocks)
{
sdio_start_next_block_tx(sd_card_p);
STATE.transfer_state = SDIO_TX;
if (STATE.blocks_checksumed < STATE.total_blocks)
{
// Precompute the CRC for next block so that it is ready when
// we want to send it.
sdio_compute_next_tx_checksum(sd_card_p);
}
}
else
{
rp2040_sdio_stop(sd_card_p);
}
}
}
}
// Check if transmission is complete
sdio_status_t rp2040_sdio_tx_poll(sd_card_t *sd_card_p, uint32_t *bytes_complete)
{
#if !PICO_RISCV
if (SCB->ICSR & SCB_ICSR_VECTACTIVE_Msk)
{
// Verify that IRQ handler gets called even if we are in hardfault handler
sdio_irq_handler(sd_card_p);
}
#endif
if (bytes_complete)
{
*bytes_complete = STATE.blocks_done * SDIO_BLOCK_SIZE;
}
if (STATE.transfer_state == SDIO_IDLE)
{
rp2040_sdio_stop(sd_card_p);
return STATE.wr_status;
}
else if (millis() - STATE.transfer_start_time >= sd_timeouts.rp2040_sdio_tx_poll)
{
EMSG_PRINTF("rp2040_sdio_tx_poll() timeout\n");
DBG_PRINTF("rp2040_sdio_tx_poll() timeout, "
"PIO PC: %d"
" RXF: %d"
" TXF: %d"
" DMA CNT: %lu\n",
(int)pio_sm_get_pc(SDIO_PIO, SDIO_DATA_SM) - (int)STATE.pio_data_tx_offset,
(int)pio_sm_get_rx_fifo_level(SDIO_PIO, SDIO_DATA_SM),
(int)pio_sm_get_tx_fifo_level(SDIO_PIO, SDIO_DATA_SM),
dma_hw->ch[SDIO_DMA_CH].al2_transfer_count
);
rp2040_sdio_stop(sd_card_p);
return SDIO_ERR_DATA_TIMEOUT;
}
return SDIO_BUSY;
}
// Force everything to idle state
static sdio_status_t rp2040_sdio_stop(sd_card_t *sd_card_p)
{
dma_channel_abort(SDIO_DMA_CH);
dma_channel_abort(SDIO_DMA_CHB);
switch (sd_card_p->sdio_if_p->DMA_IRQ_num) {
case DMA_IRQ_0:
dma_channel_set_irq0_enabled(SDIO_DMA_CHB, false);
break;
case DMA_IRQ_1:
dma_channel_set_irq1_enabled(SDIO_DMA_CHB, false);
break;
default:
myASSERT(false);
}
pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, false);
pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_DATA_SM, SDIO_D0, 4, false);
STATE.transfer_state = SDIO_IDLE;
return SDIO_OK;
}
bool rp2040_sdio_init(sd_card_t *sd_card_p, float clk_div) {
// Mark resources as being in use, unless it has been done already.
if (!STATE.resources_claimed) {
if (!SDIO_PIO)
SDIO_PIO = pio0; // Default
if (!sd_card_p->sdio_if_p->DMA_IRQ_num)
sd_card_p->sdio_if_p->DMA_IRQ_num = DMA_IRQ_0; // Default
// pio_sm_claim(SDIO_PIO, SDIO_CMD_SM);
// int pio_claim_unused_sm(PIO pio, bool required);
SDIO_CMD_SM = pio_claim_unused_sm(SDIO_PIO, true);
// pio_sm_claim(SDIO_PIO, SDIO_DATA_SM);
SDIO_DATA_SM = pio_claim_unused_sm(SDIO_PIO, true);
// dma_channel_claim(SDIO_DMA_CH);
SDIO_DMA_CH = dma_claim_unused_channel(true);
// dma_channel_claim(SDIO_DMA_CHB);
SDIO_DMA_CHB = dma_claim_unused_channel(true);
/* Set up IRQ handler for when DMA completes. */
dma_irq_add_handler(sd_card_p->sdio_if_p->DMA_IRQ_num,
sd_card_p->sdio_if_p->use_exclusive_DMA_IRQ_handler);
STATE.resources_claimed = true;
}
dma_channel_abort(SDIO_DMA_CH);
dma_channel_abort(SDIO_DMA_CHB);
pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, false);
pio_sm_set_enabled(SDIO_PIO, SDIO_DATA_SM, false);
// Load PIO programs
pio_clear_instruction_memory(SDIO_PIO);
// Command & clock state machine
STATE.pio_cmd_clk_offset = pio_add_program(SDIO_PIO, &sdio_cmd_clk_program);
pio_sm_config cfg = sdio_cmd_clk_program_get_default_config(STATE.pio_cmd_clk_offset);
sm_config_set_out_pins(&cfg, SDIO_CMD, 1);
sm_config_set_in_pins(&cfg, SDIO_CMD);
sm_config_set_set_pins(&cfg, SDIO_CMD, 1);
sm_config_set_jmp_pin(&cfg, SDIO_CMD);
sm_config_set_sideset_pins(&cfg, SDIO_CLK);
sm_config_set_out_shift(&cfg, false, true, 32);
sm_config_set_in_shift(&cfg, false, true, 32);
sm_config_set_clkdiv(&cfg, clk_div);
sm_config_set_mov_status(&cfg, STATUS_TX_LESSTHAN, 2);
pio_sm_init(SDIO_PIO, SDIO_CMD_SM, STATE.pio_cmd_clk_offset, &cfg);
pio_sm_set_consecutive_pindirs(SDIO_PIO, SDIO_CMD_SM, SDIO_CLK, 1, true);
pio_sm_set_enabled(SDIO_PIO, SDIO_CMD_SM, true);
// Data reception program
STATE.pio_data_rx_offset = pio_add_program(SDIO_PIO, &sdio_data_rx_program);
STATE.pio_cfg_data_rx = sdio_data_rx_program_get_default_config(STATE.pio_data_rx_offset);
sm_config_set_in_pins(&STATE.pio_cfg_data_rx, SDIO_D0);
sm_config_set_in_shift(&STATE.pio_cfg_data_rx, false, true, 32);
sm_config_set_out_shift(&STATE.pio_cfg_data_rx, false, true, 32);
sm_config_set_clkdiv(&STATE.pio_cfg_data_rx, clk_div);
// Data transmission program
STATE.pio_data_tx_offset = pio_add_program(SDIO_PIO, &sdio_data_tx_program);
STATE.pio_cfg_data_tx = sdio_data_tx_program_get_default_config(STATE.pio_data_tx_offset);
sm_config_set_in_pins(&STATE.pio_cfg_data_tx, SDIO_D0);
sm_config_set_set_pins(&STATE.pio_cfg_data_tx, SDIO_D0, 4);
sm_config_set_out_pins(&STATE.pio_cfg_data_tx, SDIO_D0, 4);
sm_config_set_in_shift(&STATE.pio_cfg_data_tx, false, false, 32);
sm_config_set_out_shift(&STATE.pio_cfg_data_tx, false, true, 32);
sm_config_set_clkdiv(&STATE.pio_cfg_data_tx, clk_div);
// Disable SDIO pins input synchronizer.
// This reduces input delay.
// Because the CLK is driven synchronously to CPU clock,
// there should be no metastability problems.
SDIO_PIO->input_sync_bypass |= (1 << SDIO_CLK) | (1 << SDIO_CMD) | (1 << SDIO_D0) | (1 << SDIO_D1) | (1 << SDIO_D2) | (1 << SDIO_D3);
// Redirect GPIOs to PIO
#if PICO_SDK_VERSION_MAJOR < 2
typedef enum gpio_function gpio_function_t;
#endif
gpio_function_t fn;
if (pio1 == SDIO_PIO)
fn = GPIO_FUNC_PIO1;
else
fn = GPIO_FUNC_PIO0;
gpio_set_function(SDIO_CMD, fn);
gpio_set_function(SDIO_CLK, fn);
gpio_set_function(SDIO_D0, fn);
gpio_set_function(SDIO_D1, fn);
gpio_set_function(SDIO_D2, fn);
gpio_set_function(SDIO_D3, fn);
gpio_set_slew_rate(SDIO_CMD, GPIO_SLEW_RATE_FAST);
gpio_set_slew_rate(SDIO_CLK, GPIO_SLEW_RATE_FAST);
gpio_set_slew_rate(SDIO_D0, GPIO_SLEW_RATE_FAST);
gpio_set_slew_rate(SDIO_D1, GPIO_SLEW_RATE_FAST);
gpio_set_slew_rate(SDIO_D2, GPIO_SLEW_RATE_FAST);
gpio_set_slew_rate(SDIO_D3, GPIO_SLEW_RATE_FAST);
if (sd_card_p->sdio_if_p->set_drive_strength) {
gpio_set_drive_strength(SDIO_CMD, sd_card_p->sdio_if_p->CMD_gpio_drive_strength);
gpio_set_drive_strength(SDIO_CLK, sd_card_p->sdio_if_p->CLK_gpio_drive_strength);
gpio_set_drive_strength(SDIO_D0, sd_card_p->sdio_if_p->D0_gpio_drive_strength);
gpio_set_drive_strength(SDIO_D1, sd_card_p->sdio_if_p->D1_gpio_drive_strength);
gpio_set_drive_strength(SDIO_D2, sd_card_p->sdio_if_p->D2_gpio_drive_strength);
gpio_set_drive_strength(SDIO_D3, sd_card_p->sdio_if_p->D3_gpio_drive_strength);
}
return true;
}