/* * The MIT License (MIT) * * Copyright (c) 2019 Ha Thach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * */ #include "tusb.h" #include "ff.h" #include "diskio.h" #include //--------------------------------------------------------------------+ // MACRO TYPEDEF CONSTANT ENUM DECLARATION //--------------------------------------------------------------------+ static scsi_inquiry_resp_t inquiry_resp; //------------- Elm Chan FatFS -------------// static FATFS fatfs[CFG_TUH_DEVICE_MAX]; // for simplicity only support 1 LUN per device static volatile bool _disk_busy[CFG_TUH_DEVICE_MAX]; bool inquiry_complete_cb(uint8_t dev_addr, tuh_msc_complete_data_t const * cb_data) { msc_cbw_t const* cbw = cb_data->cbw; msc_csw_t const* csw = cb_data->csw; if (csw->status != 0) { printf("Inquiry failed\r\n"); return false; } // Print out Vendor ID, Product ID and Rev printf("%.8s %.16s rev %.4s\r\n", inquiry_resp.vendor_id, inquiry_resp.product_id, inquiry_resp.product_rev); // Get capacity of device uint32_t const block_count = tuh_msc_get_block_count(dev_addr, cbw->lun); uint32_t const block_size = tuh_msc_get_block_size(dev_addr, cbw->lun); printf("Disk Size: %" PRIu32 " MB\r\n", block_count / ((1024*1024)/block_size)); printf("Block Count = %" PRIu32 ", Block Size: %" PRIu32 "\r\n", block_count, block_size); printf("Monter le système de fichier avec FatFs\n"); // Monter le système de fichier avec FatFs uint8_t const drive_num = dev_addr-1; char drive_path[3] = "0:"; drive_path[0] += drive_num; if ( f_mount(&fatfs[drive_num], "", 1) != FR_OK ) { printf("FatFs mount failed\n"); return true; } FIL fp; const char buffer[]= "Ceci est le test de Poivron Robotique\n"; int nb_byte_witten; FRESULT error; error = f_open(&fp, "Poivron.txt", FA_WRITE | FA_OPEN_ALWAYS); if(error){ printf("f_open: error %d\n", error); } if(f_write(&fp, buffer, strlen(buffer), &nb_byte_witten)){ printf("f_write: error %d\n", error); }else{ printf("Ecris: %d octets\n", nb_byte_witten); } f_close(&fp); printf("Fichier Poivron.txt cree avec succes\n"); return true; } //------------- IMPLEMENTATION -------------// void tuh_msc_mount_cb(uint8_t dev_addr) { printf("A MassStorage device is mounted\r\n"); uint8_t const lun = 0; tuh_msc_inquiry(dev_addr, lun, &inquiry_resp, inquiry_complete_cb, 0); } void tuh_msc_umount_cb(uint8_t dev_addr) { (void) dev_addr; printf("A MassStorage device is unmounted\r\n"); } //--------------------------------------------------------------------+ // DiskIO //--------------------------------------------------------------------+ static void wait_for_disk_io(BYTE pdrv) { while(_disk_busy[pdrv]) { tuh_task(); } } static bool disk_io_complete(uint8_t dev_addr, tuh_msc_complete_data_t const * cb_data) { (void) dev_addr; (void) cb_data; _disk_busy[dev_addr-1] = false; return true; } DSTATUS disk_status ( BYTE pdrv /* Physical drive nmuber to identify the drive */ ) { uint8_t dev_addr = pdrv + 1; return tuh_msc_mounted(dev_addr) ? 0 : STA_NODISK; } DSTATUS disk_initialize ( BYTE pdrv /* Physical drive nmuber to identify the drive */ ) { (void) pdrv; return 0; // nothing to do } DRESULT disk_read ( BYTE pdrv, /* Physical drive nmuber to identify the drive */ BYTE *buff, /* Data buffer to store read data */ LBA_t sector, /* Start sector in LBA */ UINT count /* Number of sectors to read */ ) { uint8_t const dev_addr = pdrv + 1; uint8_t const lun = 0; _disk_busy[pdrv] = true; tuh_msc_read10(dev_addr, lun, buff, sector, (uint16_t) count, disk_io_complete, 0); wait_for_disk_io(pdrv); return RES_OK; } #if FF_FS_READONLY == 0 DRESULT disk_write ( BYTE pdrv, /* Physical drive nmuber to identify the drive */ const BYTE *buff, /* Data to be written */ LBA_t sector, /* Start sector in LBA */ UINT count /* Number of sectors to write */ ) { uint8_t const dev_addr = pdrv + 1; uint8_t const lun = 0; _disk_busy[pdrv] = true; tuh_msc_write10(dev_addr, lun, buff, sector, (uint16_t) count, disk_io_complete, 0); wait_for_disk_io(pdrv); return RES_OK; } #endif DRESULT disk_ioctl ( BYTE pdrv, /* Physical drive nmuber (0..) */ BYTE cmd, /* Control code */ void *buff /* Buffer to send/receive control data */ ) { uint8_t const dev_addr = pdrv + 1; uint8_t const lun = 0; switch ( cmd ) { case CTRL_SYNC: // nothing to do since we do blocking return RES_OK; case GET_SECTOR_COUNT: *((DWORD*) buff) = (WORD) tuh_msc_get_block_count(dev_addr, lun); return RES_OK; case GET_SECTOR_SIZE: *((WORD*) buff) = (WORD) tuh_msc_get_block_size(dev_addr, lun); return RES_OK; case GET_BLOCK_SIZE: *((DWORD*) buff) = 1; // erase block size in units of sector size return RES_OK; default: return RES_PARERR; } return RES_OK; } DWORD get_fattime (void){ return (2025-1970) << 25 | // Année 6 << 21 | // Mois 7 << 16 | // jour du mois 17 << 11 | // Heures 29 << 5 | // Minutes 30 << 0 // Secondes ; }